Saltar al contenido principal

# 9.5E: Ejercicios

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

### La práctica hace la perfección

##### Ejercicio$$\PageIndex{11}$$ Solve equations in quadratic form

En los siguientes ejercicios, resuelve.

1. $$x^{4}-7 x^{2}+12=0$$
2. $$x^{4}-9 x^{2}+18=0$$
3. $$x^{4}-13 x^{2}-30=0$$
4. $$x^{4}+5 x^{2}-36=0$$
5. $$2 x^{4}-5 x^{2}+3=0$$
6. $$4 x^{4}-5 x^{2}+1=0$$
7. $$2 x^{4}-7 x^{2}+3=0$$
8. $$3 x^{4}-14 x^{2}+8=0$$
9. $$(x-3)^{2}-5(x-3)-36=0$$
10. $$(x+2)^{2}-3(x+2)-54=0$$
11. $$(3 y+2)^{2}+(3 y+2)-6=0$$
12. $$(5 y-1)^{2}+3(5 y-1)-28=0$$
13. $$\left(x^{2}+1\right)^{2}-5\left(x^{2}+1\right)+4=0$$
14. $$\left(x^{2}-4\right)^{2}-4\left(x^{2}-4\right)+3=0$$
15. $$2\left(x^{2}-5\right)^{2}-5\left(x^{2}-5\right)+2=0$$
16. $$2\left(x^{2}-5\right)^{2}-7\left(x^{2}-5\right)+6=0$$
17. $$x-\sqrt{x}-20=0$$
18. $$x-8 \sqrt{x}+15=0$$
19. $$x+6 \sqrt{x}-16=0$$
20. $$x+4 \sqrt{x}-21=0$$
21. $$6 x+\sqrt{x}-2=0$$
22. $$6 x+\sqrt{x}-1=0$$
23. $$10 x-17 \sqrt{x}+3=0$$
24. $$12 x+5 \sqrt{x}-3=0$$
25. $$x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0$$
26. $$x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28$$
27. $$x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12$$
28. $$x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0$$
29. $$6 x^{\frac{2}{3}}-x^{\frac{1}{3}}=12$$
30. $$3 x^{\frac{2}{3}}-10 x^{\frac{1}{3}}=8$$
31. $$8 x^{\frac{2}{3}}-43 x^{\frac{1}{3}}+15=0$$
32. $$20 x^{\frac{2}{3}}-23 x^{\frac{1}{3}}+6=0$$
33. $$x-8 x^{\frac{1}{2}}+7=0$$
34. $$2 x-7 x^{\frac{1}{2}}=15$$
35. $$6 x^{-2}+13 x^{-1}+5=0$$
36. $$15 x^{-2}-26 x^{-1}+8=0$$
37. $$8 x^{-2}-2 x^{-1}-3=0$$
38. $$15 x^{-2}-4 x^{-1}-4=0$$
Contestar

1. $$x=\pm \sqrt{3}, x=\pm 2$$

3. $$x=\pm \sqrt{15}, x=\pm \sqrt{2} i$$

5. $$x=\pm 1, x=\frac{ \pm \sqrt{6}}{2}$$

7. $$x=\pm \sqrt{3}, x=\pm \frac{\sqrt{2}}{2}$$

9. $$x=-1, x=12$$

11. $$x=-\frac{5}{3}, x=0$$

13. $$x=0, x=\pm \sqrt{3}$$

15. $$x=\pm \frac{11}{2}, x=\pm \frac{\sqrt{22}}{2}$$

17. $$x=25$$

19. $$x=4$$

21. $$x=\frac{1}{4}$$

23. $$x=\frac{1}{25}, x=\frac{9}{4}$$

25. $$x=-1, x=-512$$

27. $$x=8, x=-216$$

29. $$x=\frac{27}{8}, x=-\frac{64}{27}$$

31. $$x=27, x=64,000$$

33. $$x=1, x=49$$

35. $$x=-2, x=-\frac{3}{5}$$

37. $$x=-2, x=\frac{4}{3}$$

##### Ejercicio$$\PageIndex{12}$$ writing exercises
1. Explicar cómo reconocer una ecuación en forma cuadrática.
2. Explicar el procedimiento para resolver una ecuación en forma cuadrática.
Contestar

1. Las respuestas variarán.

## Autocomprobación

a. después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.

b. En una escala del 1 al 10, ¿cómo calificaría su dominio de esta sección a la luz de sus respuestas en la lista de verificación? ¿Cómo se puede mejorar esto?

This page titled 9.5E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.