9.5E: Ejercicios
( \newcommand{\kernel}{\mathrm{null}\,}\)
La práctica hace la perfección
En los siguientes ejercicios, resuelve.
- x4−7x2+12=0
- x4−9x2+18=0
- x4−13x2−30=0
- x4+5x2−36=0
- 2x4−5x2+3=0
- 4x4−5x2+1=0
- 2x4−7x2+3=0
- 3x4−14x2+8=0
- (x−3)2−5(x−3)−36=0
- (x+2)2−3(x+2)−54=0
- (3y+2)2+(3y+2)−6=0
- (5y−1)2+3(5y−1)−28=0
- (x2+1)2−5(x2+1)+4=0
- (x2−4)2−4(x2−4)+3=0
- 2(x2−5)2−5(x2−5)+2=0
- 2(x2−5)2−7(x2−5)+6=0
- x−√x−20=0
- x−8√x+15=0
- x+6√x−16=0
- x+4√x−21=0
- 6x+√x−2=0
- 6x+√x−1=0
- 10x−17√x+3=0
- 12x+5√x−3=0
- x23+9x13+8=0
- x23−3x13=28
- x23+4x13=12
- x23−11x13+30=0
- 6x23−x13=12
- 3x23−10x13=8
- 8x23−43x13+15=0
- 20x23−23x13+6=0
- x−8x12+7=0
- 2x−7x12=15
- 6x−2+13x−1+5=0
- 15x−2−26x−1+8=0
- 8x−2−2x−1−3=0
- 15x−2−4x−1−4=0
- Contestar
-
1. x=±√3,x=±2
3. x=±√15,x=±√2i
5. x=±1,x=±√62
7. x=±√3,x=±√22
9. x=−1,x=12
11. x=−53,x=0
13. x=0,x=±√3
15. x=±112,x=±√222
17. x=25
19. x=4
21. x=14
23. x=125,x=94
25. x=−1,x=−512
27. x=8,x=−216
29. x=278,x=−6427
31. x=27,x=64,000
33. x=1,x=49
35. x=−2,x=−35
37. x=−2,x=43
- Explicar cómo reconocer una ecuación en forma cuadrática.
- Explicar el procedimiento para resolver una ecuación en forma cuadrática.
- Contestar
-
1. Las respuestas variarán.
Autocomprobación
a. después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.

b. En una escala del 1 al 10, ¿cómo calificaría su dominio de esta sección a la luz de sus respuestas en la lista de verificación? ¿Cómo se puede mejorar esto?