3.4: Desigualdades lineales en dos variables
( \newcommand{\kernel}{\mathrm{null}\,}\)
Anteriormente, representamos desigualdades en una variable, pero ahora aprendemos a graficar las desigualdades en dos variables. Aunque esta sección puede parecer similar a las ecuaciones lineales en dos variables, las desigualdades lineales en dos variables tienen muchas aplicaciones. Por ejemplo, los dueños de negocios quieren saber cuándo los ingresos son mayores que el costo para que su negocio obtenga ganancias, por ejemplo,> costo de ingresos.
Una desigualdad lineal en dos variables es una desigualdad de la formaax+by<c,
Recordar. La solución a una desigualdad lineal en una variable es un intervalo de números, e.g.(−∞,∞),[−2,3),(1,9),[−7,−3], etc.
Verificación de Soluciones
Un par ordenado(x,y) es una solución a una desigualdad lineal en dos variables,ax+by<c, si el par ordenado(x,y) hace que la desigualdad sea verdadera, donde lo mismo es para>,≤,≥ ya,b≠0.
Verificar si cada par ordenado es una solución a la desigualdady>x+4.
- (0,0)
- (1,6)
Solución
Sustituimos los pares ordenados en la desigualdad y determinamos si los resultados son ciertos.
- Sustituyamos(0,0) en la desigualdad y determinemos si el lado izquierdo es mayor que el lado derecho. y?>x+4Substitute x=0 and y=00?>0+4Simplify0>4X FalseDe ahí(0,0) que no sea una solución a la desigualdady>x+4.
- Sustituyamos(1,6) en la desigualdad y determinemos si el lado izquierdo es mayor que el lado derecho. y?>x+4Substitute x=1 and y=66?>1+4Simplify6>5✓ TrueDe ahí(1,6) que sea una solución a la desigualdady>x+4.
Líneas de límite
Si se nos da una desigualdad lineal,ax+by<c, podríamos ver en Ejemplo3.4.1 que no todos los pares ordenados son una solución, sólo algunos. ¿Por qué? Bueno, fíjate que(0,0) está por debajo de la líneay=x+4 y(1,6) está por encima de la líneay=x+4. Esto implica que los pares ordenados en ciertas regiones son soluciones a la desigualdady>x+4. De ahí que la líneay=x+4 sea crítica a la hora de encontrar soluciones a la desigualdad. Llamamos a la líneay=x+4 línea límite, una línea que separa los pares ordenados que son soluciones y los pares ordenados que no son soluciones de la desigualdad lineal en dos variablesy>x+4.
Una ecuación lineal en dos variablesax+by=c se llama la línea límite, la línea que separa la región dondeax+by>c y de la región dondeax+by<c.
Ya que hay cuatro símbolos de desigualdad:>,<,≥,≤, entonces tenemos desigualdades lineales en dos variables que incluyen el límite, por ejemplo, desigualdades con≤ y≥, y desigualdades lineales en dos variables que excluyen el límite, por ejemplo, desigualdades con< y>.
Podemos usar la siguiente tabla para ayudar a identificar la línea de límite, determinar si incluir la línea límite y la forma en que la línea límite se ve gráficamente.
Mesa3.4.1
Caso 1. | Caso 2. |
---|---|
ax+by<c | ax+by≤c |
ax+by>c | ax+by≥c |
Línea límite:ax+by=c | Línea límite:ax+by=c |
La línea límite está excluida en la solución | La línea límite está incluida en la solución |
La línea límite está discontinua | La línea límite es sólida |
Revisemos Ejemplo3.4.1 y graficemos la línea límite y los puntos(0,0) y(1,6).
Solución
Ya que tenemosy>x+4, podemos ver en la tabla anterior tenemos Caso 1. y la línea límite está excluida. Representamos esto graficando la líneay=x+4 como una línea discontinua.

Podemos ver en la gráfica que el punto(0,0) se encuentra por debajo de la línea de límitey=x+4 y el punto(1,6) se encuentra por encima de la línea límite. Recordemos, el punto(1,6) se verificó como una solución dey>x+4 en Ejemplo3.4.1. Además, cualquier par ordenado que se encuentre arribay=x+4 se verificará como solución, es decir, haciendo verdadera la desigualdad. Por lo general, representamos esta área sombreando la región donde el conjunto de pares ordenados hacen que la desigualdad sea cierta.
Graficando Desigualdades Lineales
Grafica la desigualdad a partir de Ejemplo3.4.1.
Solución
Como sabemos que(1,6) es una solución a la desigualdad, entonces sombreamos por encima de la línea límite discontinua:

Vemos que cualquier par ordenado en la región sombreada es una solución a la desigualdad. Por ejemplo, escojamos(−4,5) y verifiquemos que esta es una solución:y?>x+4Substitute x=−4 and y=55?>−4+4Simplify5>0✓ True
De ahí(−4,5) que sea una solución a la desigualdady>x+4.
Dada una desigualdad lineal en dos variables,ax+by<c, utilizamos los pasos a continuación para graficarax+by<c, donde se aplica el mismo proceso para>,≤,≥ ya,b≠0.
Paso 1. Reescribir la desigualdad en forma de pendiente-intercepción, es decir,y=mx+b.
Paso 2. Grafique la línea límite de acuerdo a los dos casos:
Caso 1. Si la desigualdad es< o>, entonces la línea límite es discontinua.
Caso 2. Si la desigualdad es≥ o≤, entonces la línea límite es sólida.
Paso 3. Seleccione un punto de prueba que no esté en la línea de contorno. Pregunta: ¿Este par ordenado hace que la desigualdad sea cierta?
Paso 4. Si el par ordenado es
- una solución a la desigualdad, es decir, hace que la desigualdad sea cierta, luego sombrear el lado que incluye al par ordenado.
- no es una solución, luego sombrear el lado opuesto de la línea límite.
Si elegimos un punto de prueba en la línea límite, obtendremos una identidad, donde ambos lados del símbolo de desigualdad son el mismo número. De ahí que sea crítico elegir un punto que no esté en la línea limítrofe.
Grafica la desigualdad:2x−y>3.
Solución
Sigamos los pasos dados anteriormente para graficar la desigualdad.
Paso 1. Reescribir la desigualdad en forma de pendiente-intercepción, es decir,y=mx+b. 2x−y>3−y>−2x+3y<2x−3
Paso 2. Grafique la línea límite de acuerdo a los dos casos. Ya que la desigualdad dada es<, entonces tenemos el Caso 1.

Paso 3. Seleccione un punto de prueba que no esté en la línea de contorno. Pregunta: ¿Este par ordenado hace que la desigualdad sea cierta?
¡Escojamos el punto de prueba(0,0) ya que es una gran elección! y?<2x−30?<2(0)−30≤−3
Paso 4. Si el par ordenado es
- una solución a la desigualdad, es decir, hace que la desigualdad sea cierta, luego sombrear el lado que incluye al par ordenado.
- no es una solución, luego sombrear el lado opuesto de la línea límite.
Dado que el par ordenado no(0,0) es una solución a la desigualdad, entonces sombreamos en el lado opuesto de la línea límite desde la ubicación del par ordenado.

Otra forma de graficar las desigualdades lineales en dos variables es completar el Paso 1. y Paso 2. , pero en lugar de tomar un punto de prueba en el Paso 3. , podemos observar los símbolos de desigualdad. Si la desigualdad tiene< o≤, entonces fácilmente sombreamos por debajo de la línea límite, es decir, por debajo de lay -intercepción. Del mismo modo, si la desigualdad tiene> o≥, entonces fácilmente sombreamos por encima de la línea límite, es decir, por encima de lay -intercepción.
Grafica la desigualdad:3x+2y≥−6.
Solución
Sigamos los pasos dados anteriormente para graficar la desigualdad, pero intenta saltarte el Paso 3. y Paso 4.
Paso 1. Reescribir la desigualdad en forma de pendiente-intercepción, es decir,y=mx+b. 3x+2y≥−62y≥−3x−6y≥−32x−3
Paso 2. Grafique la línea límite de acuerdo a los dos casos. Ya que la desigualdad dada es≥, entonces tenemos el Caso 2.

Dado que esta desigualdad es≥, donde todos los pares ordenados por encima de la línea límite son soluciones a la desigualdad, podemos sombrear fácilmente por encima de lay -intercepción:

Desigualdades lineales en dos variables
Determinar si los pares ordenados dados son soluciones a la desigualdad.
x+2y≥−4;(0,−4);(1,1)
2x−y≤2;(1,5);(3,1)
Grafica las siguientes desigualdades.
2x−y≤2
x>4y−8
x+2y≥−4
3x+4y<12
6x+8y≤24
5x+3y≤15
y>3x+1
3x+2y≤12
5x−2y<10
3x+4y≥24
y≤3x−4