Saltar al contenido principal
LibreTexts Español

9.1: Polos y ceros

  • Page ID
    109864
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Te recordamos la siguiente terminología: Supongamos que\(f(z)\) es analítico en\(z_0\) y

    \[f(z) = a_n (z - z_0)^n + a_{n + 1} (z - z_0)^{n + 1} + \ ...,\]

    con\(a_n \ne 0\). Entonces decimos que\(f\) tiene un cero de orden\(n\) en\(z_0\). Si\(n = 1\) decimos\(z_0\) es un simple cero.

    Supongamos que\(f\) tiene una sigularidad aislada en\(z_0\) y serie Laurent

    \[f(z) = \dfrac{b_n}{(z - z_0)^n} + \dfrac{b_{n - 1}}{(z - z_0)^{n - 1}} + \ ... + \dfrac{b_1}{z - z_0} + a_0 + a_1 (z - z_0) + \ ...\]

    que converge en\(0 < |z - z_0| < R\) y con\(b_n \ne 0\). Entonces decimos que\(f\) tiene un polo de orden\(n\) en\(z_0\). Si\(n = 1\) decimos\(z_0\) es un simple polo.

    Hay varios ejemplos en las notas del Tema 8. Aquí hay uno más

    Ejemplo\(\PageIndex{1}\)

    \[f(z) = \dfrac{z + 1}{z^3 (z^2 + 1)} \nonumber\]

    tiene singularidades aisladas en\(z = 0\),\(\pm i\) y un cero en\(z = -1\). Mostraremos que\(z = 0\) es un polo de orden 3,\(z = \pm i\) son polos de orden 1 y\(z = -1\) es un cero de orden 1. El estilo de argumento es el mismo en cada caso.

    En\(z = 0\):

    \[f(z) = \dfrac{1}{z^3} \cdot \dfrac{z + 1}{z^2 + 1}. \nonumber\]

    Llama al segundo factor\(g(z)\). Ya que\(g(z)\) es analítico en\(z = 0\) y\(g(0) = 1\), tiene una serie Taylor

    \[g(z) = \dfrac{z + 1}{z^2 + 1} = 1 + a_1 z + a_2 z^2 + \ ... \nonumber\]

    Por lo tanto

    \[f(z) = \dfrac{1}{z^3} + \dfrac{a_1}{z^2} + \dfrac{a_2}{z} + \ ... \nonumber\]

    Esto muestra\(z = 0\) es un polo de orden 3.

    En\(z = i\):\(f(z) = \dfrac{1}{z - i} \cdot \dfrac{z + 1}{z^3 (z + i)}\). Llama al segundo factor\(g(z)\). Ya que\(g(z)\) es analítico en\(z = i\), tiene una serie Taylor

    \[g(z) = \dfrac{z + 1}{z^3 (z + i)} = a_0 + a_1 (z - i) + a_2 (z - i)^2 + \ ... \nonumber\]

    donde\(a_0 = g(i) \ne 0\). Por lo tanto,

    \[f(z) = \dfrac{a_0}{z - i} + a_1 + a_2 (z - i) + \ ... \nonumber\]

    Este espectáculo\(z = i\) es un polo de orden 1.

    Los argumentos a favor\(z = -i\) y\(z = -1\) son similares.


    This page titled 9.1: Polos y ceros is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.