13.2: Transformación de Laplace
- Page ID
- 109776
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La transformación de Laplace de una función\(f(t)\) está definida por la integral
\[\mathcal{L} (f;s) = \int_{0}^{\infty} e^{-st} f(t)\ dt,\]
para aquellos\(s\) en los que converge la integral. Aquí\(s\) se permite tomar valores complejos.
La transformación de Laplace solo se preocupa\(f(t)\) por\(t \ge 0\). En general, hablando podemos requerir\(f(t) = 0\) para\(t < 0\).
Donde la notación es clara, usaremos una letra mayúscula para indicar la transformación de Laplace, por ejemplo,\(\mathcal{L} (f; s) = F(s)\).
La transformación de Laplace que definimos a veces se llama la transformación unilateral de Laplace. Hay una versión a dos caras donde la integral va de\(-\infty\) a\(\infty\).
Primeros ejemplos
Vamos a calcular algunos ejemplos. También pondremos estos resultados en la tabla de transformación de Laplace al final de estas notas.
Vamos\(f(t) = e^{at}\). Compute\(F(s) = \mathcal{L} (f; s)\) directamente. Dar la región en el\(s\) plano complejo donde converge la integral.
\[\begin{array} {rcl} {\mathcal{L} (e^{at} ; s)} & = & {\int_{0}^{\infty} e^{at} e^{-st}\ dt = \int_{0}^{\infty} e^{(a - s) t} \ dt = \dfrac{e^{(a - s) t}}{a - s} \vert_{0}^{\infty}} \\ {rcl} {} & = & {= \begin{cases} \dfrac{1}{s - a} & \text{ if Re} (s) > \text{Re} (a) \\ \text{divergent} & \text{ otherwise} \end{cases}} \end{array}\]
La última fórmula viene de\(\infty\) enchufarse a lo exponencial. Esto es 0 si\(\text{Re} (a - s) < 0\) y no definido de otra manera.
Vamos\(f(t) = b\). Compute\(F(s) = \mathcal{L} (f; s)\) directamente. Dar la región en el\(s\) plano complejo donde converge la integral.
\[\begin{array} {rcl} {\mathcal{L} (b ; s)} & = & {\int_{0}^{\infty} be^{-st}\ dt = \dfrac{be^{- st}}{- s} \vert_{0}^{\infty}} \\ {rcl} {} & = & {= \begin{cases} \dfrac{b}{s} & \text{ if Re} (s) > 0 \\ \text{divergent} & \text{ otherwise} \end{cases}} \end{array}\]
La última fórmula viene de\(\infty\) enchufarse a lo exponencial. Esto es 0 si\(\text{Re} (-s) < 0\) y no definido de otra manera.
Vamos\(f(t) = t\). Compute\(F(s) = \mathcal{L} (f;s)\) directamente. Dar la región en el\(s\) plano complejo donde converge la integral.
\[\begin{array} {rcl} {\mathcal{L} (t ; s)} & = & {\int_{0}^{\infty} te^{-st}\ dt = \dfrac{te^{- st}}{- s} - \dfrac{e^{- st}}{s^2} \vert_{0}^{\infty}} \\ {rcl} {} & = & {= \begin{cases} \dfrac{1}{s^2} & \text{ if Re} (s) > 0 \\ \text{divergent} & \text{ otherwise} \end{cases}} \end{array}\]
Compute
\[\mathcal{L} (\cos (\omega t)).\]
Solución
Utilizamos la fórmula
\[\cos (\omega t) = \dfrac{e^{i\omega t} + e^{-i \omega t}}{2}.\]
Entonces,
\[\mathcal{L} (\cos (\omega t); s) = \dfrac{1/(s - i\omega) + 1/(s + i\omega)}{2} = \dfrac{s}{s^2 + \omega^2}.\]
Conexión a la transformada de Fourier
Las transformaciones de Laplace y Fourier están íntimamente conectadas. De hecho, a la transformación de Laplace se le suele llamar la transformación de Fourier-Laplace. Para ver la conexión comenzaremos con la transformada de Fourier de una función\(f(t)\).
\[\hat{f} (\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t}\ dt.\]
Si asumimos\(f(t) = 0\) por\(t < 0\), esto se convierte
\[\hat{f} (\omega) = \int_{0}^{\infty} f(t) e^{-i \omega t}\ dt.\]
Ahora bien\(s = i\omega\), si entonces la transformación de Laplace es
\[\mathcal{L}(f; s) = \mathcal{L} (f; i\omega) = \int_{0}^{\infty} f(t) e^{-i \omega t}\ dt.\]
Comparando estas dos ecuaciones vemos eso\(\hat{f} (\omega) = \mathcal{L} (f; i \omega)\). Vemos que las transformaciones son básicamente las mismas cosas usando notación diferente —al menos para funciones que son 0 para\(t < 0\).