Saltar al contenido principal
LibreTexts Español

2.13: Definición de Ejemplos Derivados

  • Page ID
    116829
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    En la última sección, vimos la tasa instantánea de cambio, o derivada, de una función\(f(x)\) en un punto\(x\) viene dada por

    \(f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\)

    Definición de Derivada 1

    Encuentra la derivada de la función\(f(x) = 3x + 5\) usando la definición de la derivada.

    Para usar esto en la fórmula\(f'(x) = \frac{f(x+h) - f(x)}{h}\), primero necesitamos reemplazar la\(f(x+h)\) parte de la fórmula. Esto es\(f(x)\) lo mismo que es\(3x+5\), salvo que\(x\) sustituimos por eso\((x+h)\) en parantheses. Al igual que los siguientes. Los colores son sólo para resaltar la sustitución de\(f(x+h)\) y\(f(x)\). Dejaremos caer los colores tan pronto como necesitemos combinar expresiones.

    \[\begin{align*} f'(x) & = \lim_{h \to 0} \frac

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Matematicas/Calculo_informal_con_aplicaciones_a_las_ciencias_biologicas_y_ambientales_(Seacrest)/02:_Introducción_Derivada/2.13:_Definición_de_Ejemplos_Derivados), /content/body/div[1]/div/p[3]/span/span[1], line 1, column 1
    
    {h} \\ & = \lim_{h \to 0} \frac
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Matematicas/Calculo_informal_con_aplicaciones_a_las_ciencias_biologicas_y_ambientales_(Seacrest)/02:_Introducción_Derivada/2.13:_Definición_de_Ejemplos_Derivados), /content/body/div[1]/div/p[3]/span/span[2], line 1, column 1
    
    {h} \\ \end{align*}\]

    Ahora seguimos simplificando y encontrando la respuesta.

    \[\begin{align*} f'(x) & = \lim_{h \to 0} \frac

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Matematicas/Calculo_informal_con_aplicaciones_a_las_ciencias_biologicas_y_ambientales_(Seacrest)/02:_Introducción_Derivada/2.13:_Definición_de_Ejemplos_Derivados), /content/body/div[1]/div/p[5]/span/span[1], line 1, column 1
    
    {h} \\ & = \lim_{h \to 0} \frac
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Matematicas/Calculo_informal_con_aplicaciones_a_las_ciencias_biologicas_y_ambientales_(Seacrest)/02:_Introducción_Derivada/2.13:_Definición_de_Ejemplos_Derivados), /content/body/div[1]/div/p[5]/span/span[2], line 1, column 1
    
    {h} \\ & = \lim_{h \to 0} \frac{3x + 3h + 5 - 3x - 5}{h} \\ & = \lim_{h \to 0} \frac{3h}{h} \\ & = \lim_{h \to 0} 3 \\ & = \boxed{3} \end{align*}\]

    Aquí, tenemos\(f'(x) = 3\). Eso tiene sentido si lo piensas: ¡\(3x + 5\)es una línea con pendiente\(3\)!

    Definición de Derivada 2

    Encuentra la derivada de\(f(x) = x^2\) usar la definición.

    \[\begin{align*} f'(x) & = \lim_{h \to 0} \frac

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Matematicas/Calculo_informal_con_aplicaciones_a_las_ciencias_biologicas_y_ambientales_(Seacrest)/02:_Introducción_Derivada/2.13:_Definición_de_Ejemplos_Derivados), /content/body/div[2]/div/p[2]/span/span[1], line 1, column 1
    
    {h} \\ & = \lim_{h \to 0} \frac
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Matematicas/Calculo_informal_con_aplicaciones_a_las_ciencias_biologicas_y_ambientales_(Seacrest)/02:_Introducción_Derivada/2.13:_Definición_de_Ejemplos_Derivados), /content/body/div[2]/div/p[2]/span/span[2], line 1, column 1
    
    {h} \\ & = \lim_{h \to 0} \frac
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Matematicas/Calculo_informal_con_aplicaciones_a_las_ciencias_biologicas_y_ambientales_(Seacrest)/02:_Introducción_Derivada/2.13:_Definición_de_Ejemplos_Derivados), /content/body/div[2]/div/p[2]/span/span[3], line 1, column 1
    
    {h} \\ & = \lim_{h \to 0} \frac{2xh + h^2}{h} \\ & = \lim_{h \to 0} \frac{h(2x + h)}{h} \\ & = \lim_{h \to 0} 2x + h \\ & = 2x + (0) \\ & = \boxed{2x} \end{align*}\]

    Entonces, ¿qué significa esto? Bueno, esto significa que doblamos\(x\) para encontrar la pendiente de la línea tangente de\(f(x) =x^2\). Entonces en\(x = 3\), la pendiente es\(6\), y en\(x = 1.2\), la pendiente es\(2.4\). ETC.


    This page titled 2.13: Definición de Ejemplos Derivados is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform.