1.5: Un Compendio de Fórmula Curva
- Page ID
- 118994
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A continuación\(\vecs{r} (t)=\big(x(t)\,,\,y(t)\,,\,z(t)\big)\) se presenta una parametrización de alguna curva. Los vectores\(\hat{\textbf{T}}(t),\ \hat{\textbf{N}}(t),\ \) y\(\\hat{\textbf{B}}\ \) son los vectores tangentes unitarios, normales y binormales, respectivamente, en\(\vecs{r} (t)\text{.}\) El vector tangente apunta en la dirección de desplazamiento (es decir, dirección de incremento\(t\)) y el vector normal apunta hacia el centro de curvatura. La longitud del arco de vez\(0\) en cuando\(t\) se denota\(s(t)\text{.}\) El binormal\(\ \hat{\textbf{B}}(t)=\hat{\textbf{T}} (t)\times \hat{\textbf{N}}\ \) es perpendicular al plano que mejor se ajusta a la curva en\(\vecs{r} (t)\text{.}\) Algunas fórmulas utilizan una parametrización de longitud de arco, que se denota\(\vecs{r} (s)\text{.}\)
la velocidad | \(\displaystyle \vecs{v} (t)=\dfrac{d\vecs{r} }{dt}(t)=\dfrac{ds}{dt}(t)\,\hat{\textbf{T}}(t)\) |
el vector tangente unitario |
\(\hat{\textbf{T}}(t)=\frac{\vecs{v} (t)}{|\vecs{v} (t)|}\)(parametrización general) \(\hat{\textbf{T}}(s)=\dfrac{d\vecs{r} }{ds}(s)\)(parametrización de longitud de arco) |
la aceleración | \(\displaystyle \textbf{a}(t)=\frac{\mathrm{d}^{2}\vecs{r}}{\mathrm{d}t^{2}}(t)=\frac{\mathrm{d}^{2}s}{\mathrm{d}t^{2}}(t)\,\hat{\textbf{T}}(t) +\kappa(t)\big(\dfrac{ds}{dt}(t)\big)^2\hat{\textbf{N}}(t)\) |
la velocidad | \(\displaystyle \dfrac{ds}{dt}(t) = |\vecs{v} (t)| = \big|\dfrac{d\vecs{r} }{dt}(t)\big|\) |
la longitud del arco | \(\displaystyle s(T) = \int_0^T\! \dfrac{ds}{dt}(t)\,\text{d}t = \int_0^T\! \sqrt{x'(t)^2\!+\!y'(t)^2\!+\!z'(t)^2}\,\text{d}t\) |
la curvatura |
\(\kappa(t) = \big|\dfrac{d\hat{\textbf{T}}}{dt}(t)\big|/\dfrac{ds}{dt}(t) =\displaystyle{ \frac{|\vecs{v} (t)\times\textbf{a}(t)|}{(\dfrac{ds}{dt}(t))^3} }\) \(\kappa(s) = \big|\dfrac{d\phi}{ds}(s)\big| = \big|\dfrac{d\hat{\textbf{T}}}{ds}(s)\big|\) |
el vector normal de la unidad | \(\displaystyle \hat{\textbf{N}}(t) = \dfrac{d\hat{\textbf{T}}}{dt}(t)/\big|\dfrac{d\hat{\textbf{T}}}{dt}(t)\big| \qquad \hat{\textbf{N}}(s) = \dfrac{d\hat{\textbf{T}}}{ds}(s)/\kappa(s)\) |
el radio de curvatura | \(\displaystyle \rho(t)=\frac{1}{\kappa(t)}\) |
el centro de curvatura | \(\displaystyle \vecs{r} (t)+\rho(t)\hat{\textbf{N}}(t)\) |
la torsión | \(\displaystyle \displaystyle \tau(t)=\frac{\big(\vecs{v} (t)\times\textbf{a}(t)\big) \cdot \dfrac{d\textbf{a}}{dt}(t)} {|\vecs{v} (t)\times\textbf{a}(t)|^2}\) |
el binormal | \(\displaystyle \displaystyle \hat{\textbf{B}}(t)=\hat{\textbf{T}}(t)\times \hat{\textbf{N}}(t)=\frac{\vecs{v} (t)\times\textbf{a}(t)}{|\vecs{v} (t)\times\textbf{a}(t)|}\) |
Bajo parametrización de longitud de arco (es decir, si\(t=s\)) tenemos\(\hat{\textbf{T}}(s)=\frac{d\vecs{r} }{ds}(s)\) y las fórmulas de Frenet-Serret
\[\begin{align*} \dfrac{d\hat{\textbf{T}}}{ds}(s)&=\phantom{-}\kappa(s)\ \hat{\textbf{N}}(s)\cr \dfrac{d\hat{\textbf{N}}}{ds}(s)&=\phantom{-}\tau(s)\ \hat{\textbf{B}}(s)-\kappa(s)\ \hat{\textbf{T}} (s)\cr \dfrac{d\hat{\textbf{B}}}{ds}(s)&=-\tau(s)\ \hat{\textbf{N}}(s)\cr \end{align*}\]
que en forma de matriz es
\[\begin{align*} \dfrac{d}{ds} \left[ \begin{matrix}\hat{\textbf{T}}(s) \\ \hat{\textbf{N}}(s)\\ \hat{\textbf{B}}(s)\end{matrix} \right] =\left[\begin{matrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 &\tau(s) \\ 0 &-\tau(s) & 0 \end{matrix}\right] \left[\begin{matrix}\hat{\textbf{T}} (s) \\ \hat{\textbf{N}}(s)\\ \hat{\textbf{B}}(s)\end{matrix}\right] \end{align*}\]
Cuando la curva se encuentra completamente en el\(xy\) plano, la curvatura viene dada por
\[\begin{gather*} \kappa(t) =\frac{\big| \dfrac{dx}{dt}(t)\ \frac{\mathrm{d}^{2}y}{\mathrm{d}t^{2}}(t)-\dfrac{dy}{dt}(t)\ \frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}}(t) \big|}{\Big[\big(\dfrac{dx}{dt}(t)\big)^2 +\big(\dfrac{dy}{dt}(t)\big)^2\Big]^{3/2}} \end{gather*}\]
Cuando la curva se encuentra completamente en el\(xy\) plano y la\(y\) coordenada -se da como una función,\(y(x)\text{,}\) de la\(x\) coordenada, la curvatura es
\[\begin{gather*} \kappa(x) =\frac{\big|\frac{\mathrm{d}^{2}y}{\mathrm{d}t^{2}}(x)\big|} {\Big[1+\big(\dfrac{dy}{dx}(x)\big)^2\Big]^{3/2}} \end{gather*}\]
Observe que esto se desprende de la fórmula anterior desde\(\dfrac{dx}{dx}=1\) y\(\frac{\mathrm{d}^{2}x}{\mathrm{d}x^{2}}=0\text{.}\)