Saltar al contenido principal
LibreTexts Español

1: Efectos Generativos - Órdenes y Adjunciones

  • Page ID
    112174
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    • 1.1: ¿Qué es el Orden?
      Arriba hablamos informalmente de dos conjuntos ordenados diferentes: el orden en la conectividad del sistema y el orden en booleanos false ≤ true. Entonces relacionamos estos dos conjuntos ordenados por medio de la observación de Alice Φ. Antes de continuar, necesitamos hacer esas ideas más precisas. Comenzamos con una revisión de conjuntos y relaciones y damos la definición de un preorder—abreviatura de conjunto preordenado— y un buen número de ejemplos.
    • 1.2: Cumple y se une
      Como hemos dicho, un preorden es un conjunto P dotado de un orden ≤ que relaciona los elementos. Con respecto a este orden, ciertos elementos de P pueden tener caracterizaciones distintivas, ya sea absolutamente o en relación con otros elementos. Ya hemos discutido uniones antes, pero las discutimos nuevamente ahora que hemos construido algo de formalismo.
    • 1.3: Conexiones Galois
      La preservación de las reuniones y uniones, y en particular las cuestiones relativas a los efectos generativos, está estrechamente relacionada con la teoría de las conexiones Galois, que es un caso especial de una teoría más general que discutiremos más adelante, a saber, la de las adjunciones. Usaremos alguna terminología de amonestación al describir las conexiones de Galois.
    • 1.4: Resumen y lectura adicional
    • 1.5: Más que la suma de sus partes


    This page titled 1: Efectos Generativos - Órdenes y Adjunciones is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Brendan Fong & David I. Spivak (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.