14.2: pH y pOH
- Page ID
- 1911
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Habilidades para desarrollar
- Explicar la caracterización de las soluciones acuosas como ácidas, básicas o neutras.
- Expresar las concentraciones de los iones de hidronio e hidróxido en las escalas de pH y pOH
- Hacer cálculos relacionados con pH y pOH
Como se discutió anteriormente, los iones de hidronio e de hidróxido están presentes tanto en el agua pura como en todas las soluciones acuosas, y sus concentraciones son inversamente proporcionales según lo determinado por el producto iónico del agua (Kw). Las concentraciones de estos iones en una solución a veces son determinantes críticos de las propiedades de la solución y los comportamientos químicos de sus otros solutos, y se ha desarrollado un vocabulario específico para describir estas concentraciones en términos relativos. Una solución es neutra si contiene concentraciones iguales de iones de hidronio e de hidróxido; ácida si contiene una mayor concentración de iones hidronio que los iones hidróxido; y básica si contiene una concentración menor de iones hidronio que los de iones de hidróxido.
Un medio común para expresar cantidades, cuyos valores pueden extender sobre muchos órdenes de magnitud, es usar una escala logarítmica. Una escala de este tipo que es muy popular para las concentraciones químicas y los constantes de equilibrio se basa en la función p, definida como se muestra donde "X" es la cantidad de interés y "log" es el logaritmo de la base 10:
\[\mathrm{pX=−\log X} \label{1}\]
Por lo tanto, el pH de una solución se define como se muestra aquí, donde [H3O+] es la concentración molar de ion hidronio en la solución:
\[\mathrm{pH=-\log[H_3O^+]}\label{\(\PageIndex{2}\)}\]
Reorganizando esta ecuación para aislar la molaridad del ion hidronio produce la expresión equivalente:
\[\mathrm{[H_3O^+]=10^{−pH}}\label{\(\PageIndex{3}\)}\]
Del mismo modo, la molaridad del ion hidróxido se puede expresar como una función p, o pOH:
\[\mathrm{pOH=-\log [OH^−]}\label{\(\PageIndex{4}\)}\]
o
\[\mathrm{[OH^-]=10^{−pOH}} \label{\(\PageIndex{5}\)}\]
Finalmente, la relación entre estas dos concentraciones de iones expresadas como funciones p se deriva fácilmente de la expresión \(K_w\):
\[K_\ce{w}=\ce{[H_3O^+][OH^- ]} \label{\(\PageIndex{6}\)}\]
\[-\log K_\ce{w}=\mathrm{-\log([H_3O^+][OH^−])=-\log[H_3O^+] + -\log[OH^-]}\label{\(\PageIndex{7}\)}\]
\[\mathrm{p\mathit{K}_w=pH + pOH} \label{\(\PageIndex{8}\)}\]
A 25 °C, el valor de \(K_w\) es \(1.0 \times 10^{−14}\), y entonces:
\[\mathrm{14.00=pH + pOH} \label{\(\PageIndex{9}\)}\]
La molaridad del ion de hidronio en el agua pura (o cualquier solución neutra) es \(1.0 \times 10^{-7}\; M\) a 25 °C. Por lo tanto, el pH y el pOH de una solución neutra a esta temperatura son:
\[\mathrm{pH=-\log[H_3O^+]=-\log(1.0\times 10^{−7}) = 7.00} \label{10}\]
\[\mathrm{pOH=-\log[OH^−]=-\log(1.0\times 10^{−7}) = 7.00} \label{11}\]
Y así, a esta temperatura, las soluciones ácidas son aquellas con molaridades de los iones de hidronio mayores que \(1.0 \times 10^{-7}\; M\) y las molaridades de los iones de hidróxido menores que \(1.0\ times 10^{-7}\; M\) (correspondiente a los valores de pH menos de 7.00 y valores de pOH más grandes que 7.00). Las soluciones básicas son aquellas con molaridades de iones de hidronio menores que \(1.0\ times 10^{-7}\; M\) y molaridades de iones de hidróxido más grandes que \(1.0\ times10^{-7}\; M\) (correspondiente a valores de pH más grandes que 7.00 y valores de pOH menos de 7.00).
Cuando las soluciones \(pH=7\) no son neutrales
Ya que el constante de autoionización \(K_w\) depende de la temperatura, estas correlaciones entre los valores de pH y los adjetivos como ácidos/neutros/básicos serán diferentes a temperaturas distintas de 25 °C. Por ejemplo, la molaridad del hidronio del agua pura a 80 °C es 4.9 × 10−7 M, que corresponde a los valores de pH y pOH de:
\[\begin{align*} pH &=-\log[\ce{H_3O^+}] \\[5pt] &= -\log(4.9\times 10^{−7}) \\[5pt] &=6.31 \label{12} \end{align*}\]
\[\begin{align*} pOH &=-\log[\ce{OH^-}]\\[5pt] & =-\log(4.9\times 10^{−7}) \\[5pt] &=6.31 \label{13}\end{align*}\]
Entonces, a esta temperatura, las soluciones neutras exhiben un pH = pOH = 6.31, las soluciones ácidas exhiben un pH menos de 6.31 y un pOH más grande que 6.31, mientras que las soluciones básicas exhiben un pH más grande que 6.31 y un pOH menos de 6.31. Esta distinción puede ser importante cuando se estudian ciertos procesos que ocurren a temperaturas no estándar, como las reacciones enzimáticas en organismos de sangre caliente. A menos que se indique lo contrario, se supone que las referencias a los valores de pH son aquellas a temperatura estándar (25 °C) (Tabla \(\PageIndex{1}\)).
Clasificación | Concentraciones relativas de los iones | pH a 25 °C |
---|---|---|
ácido | [H3O+] > [OH−] | pH < 7 |
neutral | [H3O+] = [OH−] | pH = 7 |
básico | [H3O+] < [OH−] | pH > 7 |
La Figura \(\PageIndex{1}\) muestra las relaciones entre [H3O+], [OH−], pH y pOH, y nos da valores para estas propiedades a temperaturas estándar para algunas sustancias comunes.
Ejemplo \(\PageIndex{1}\): Cálculo de pH a partir de \(\ce{[H_3O^+]}\)
¿Cuál es el pH del ácido del estómago, una solución de HCl con una concentración de iones de hidronio de \(1.2 \times 10^{−3}\; M\)?
Solución
\[\begin{align*} pH &=-\log [H_3O^+] \\[5pt] &= -\log(1.2 \times 10^{−3}) \\[5pt] &=−(−2.92) \\[5pt]&=2.92 \end{align*}\]
Ejercicio \(\PageIndex{1}\)
El agua expuesta al aire contiene el ácido carbónico, H2CO3, debido a la reacción entre el dióxido de carbono y el agua:
\[\ce{CO2(aq) + H2O (l) \rightleftharpoons H2CO3(aq)} \nonumber\]
El agua saturada del aire tiene una concentración de iones de hidronio causada por el \(\ce{CO_2}\) disuelto \(2.0\ times10^{-6}\;M\), aproximadamente 20 veces mayor que la del agua pura. Calcule el pH de la solución a 25 °C.
- Respuesta
-
5.70
Ejemplo \(\PageIndex{2}\): Cálculo de la concentración de los iones de hidronio a partir del pH
Calcule la concentración de los iones de hidronio en la sangre, que tiene un pH de 7.3 (un poco alcalino).
Solución
\[\mathrm{pH=-\log[H_3O^+]=7.3} \nonumber\]
\[\mathrm{\log[H_3O^+]=−7.3} \nonumber\]
\[\mathrm{[H_3O^+]=10^{−7.3}} \nonumber\]
o
\[[\ce{H_3O^+}]=\textrm{antilog of} −7.3 \nonumber\]
\[[\ce{H_3O^+}]=5\times 10^{−8}\;M \nonumber\]
(En una calculadora, tome el antilog, o el registro "inverso", de −7.3, o calcule 10−7.3.)
Ejercicio \(\PageIndex{2}\)
Calcule la concentración de los iones de hidronio de una solución con un pH de -1.07.
- Respuesta
-
12 M
La ciencia ambiental
El agua de la lluvia normal tiene un pH entre 5 y 6 debido a la presencia de CO2 disuelto que forma el ácido carbónico:
\[\ce{H2O (l) + CO2(g) ⟶ H2CO3(aq)} \label{14}\]
\[\ce{H2CO3(aq) \rightleftharpoons H^+(aq) + HCO3^- (aq)} \label{15}\]
La lluvia ácida es el agua de lluvia que tiene un pH menos que 5, debido a una variedad de óxidos no metálicos, incluyendo CO2, SO2, SO3, NO y NO2 que se disuelven en el agua y reaccionan con ella para formar no solo el ácido carbónico, sino también el ácido sulfúrico y el ácido nítrico. La formación y ionización del ácido sulfúrico se muestran aquí:
\[\ce{H2O (l) + SO3(g) ⟶ H2SO4(aq)} \label{16}\]
\[\ce{H2SO4(aq) ⟶ H^+(aq) + HSO4^- (aq)} \label{17}\]
El dióxido de carbono está naturalmente presente en la atmósfera porque nosotros y la mayoría de otros organismos lo producimos como un producto de desecho del metabolismo. El dióxido de carbono también se forma cuando los incendios sueltan carbono almacenado en la vegetación o cuando quemamos madera o combustibles fósiles. El trióxido de azufre en la atmósfera es producido naturalmente por la actividad volcánica, pero también proviene de la quema de los combustibles fósiles, que tienen rastros de azufre, y del proceso de "tostado" de minerales de sulfuros metálicos en los procesos de refinación de los metales. Los óxidos de nitrógeno se forman en los motores de combustión interna donde las altas temperaturas hacen posible que el nitrógeno y el oxígeno en el aire se combinen químicamente.
La lluvia ácida es un problema particular en las áreas industriales donde los productos de la combustión y la fundición se liberan al aire sin ser despojados de los óxidos de azufre y nitrógeno. En América del Norte y Europa hasta la década de 1980, la lluvia ácida fue responsable por la destrucción de los bosques y lagos de agua dulce, cuando la acidez de la lluvia mató a los árboles, dañó el suelo e hizo que los lagos fueran inhabitables para todas las especies, excepto las más tolerantes a los ácidos. La lluvia ácida también corroe las estatuas y las fachadas de los edificios que estaban hechas de mármol y piedra caliza (Figura \(\PageIndex{2}\)). Las regulaciones que limitan la cantidad de óxidos de azufre y nitrógeno que pueden ser liberados a la atmósfera por la industria y los automóviles han reducido la severidad del daño causado por el ácido en ambientes naturales y artificiales en América del Norte y Europa. Ahora es un problema creciente en las zonas industriales de China e India.
Ejemplo \(\PageIndex{3}\): Cálculos de pOH
¿Cuáles son el pOH y el pH de una solución 0.0125-M de hidróxido de potasio, KOH?
Solución
El hidróxido de potasio es un compuesto iónico altamente soluble y se disocia completamente cuando se disuelve en una solución diluida, produciendo [OH−] = 0.0125 M:
\[\mathrm{pOH=-\log[OH^− ]=-\log 0.0125}\]
\[=−(−1.903)=1.903\]
El pH se puede encontrar usando \(\ce{pOH}\):
\[\mathrm{pH+pOH=14.00}\]
\[\mathrm{pH=14.00−pOH=14.00−1.903=12.10}\]
Ejercicio \(\PageIndex{3}\)
La concentración de los iones de hidronio del vinagre es aproximadamente \(4\times 10^{-3}\;M\). ¿Cuáles son los valores correspondientes de pOH y pH?
- Respuesta
-
pOH = 11.6,
pH = 14.00 - pOH = 2.4
La acidez de una solución generalmente se evalúa experimentalmente mediante la medición de su pH. El pOH de una solución generalmente no se mide porque se calcula fácilmente a partir de un valor de pH determinado experimentalmente. El pH de una solución se puede medir directamente con un medidor de pH (Figura \(\PageIndex{3}\)).
El pH de una solución también se puede estimar visualmente usando los indicadores de colores (Figure \(\PageIndex{3}\)).
Resumen
La concentración de los iones de hidronio en una solución de un ácido en el agua es más grande que \(1.0\ times10^{-7}\; M\) a 25 ° C. La concentración del ion de hidróxido en una solución de una base en el agua es más grande que \(1.0\ times10^{-7}\; M\) a 25 °C. La concentración de H3O+ en una solución se puede expresar como el pH de la solución; \(\ce{pH}=-\log\ce{H3O+}\). La concentración de OH− se puede expresar como el pOH de la solución: \(\ce{pOH}=-\log[\ce{OH-}]\). En el agua pura, pH = 7.00 y pOH = 7.00
Ecuaciones Clave
- \(\ce{pH}=-\log[\ce{H3O+}]\)
- \(\ce{pOH} = -\log[\ce{OH-}]\)
- [H3O+] = 10−pH
- [OH−] = 10−pOH
- pH + pOH = pKw = 14.00 at 25 °C
Glosario
- ácido
- describe una solución en la que [H3O+] > [OH−]
- basic
- describe una solución en la que [H3O+] < [OH−]
- neutral
- describe una solución en la que [H3O+] = [OH−]
- pH
- medida logarítmica de la concentración de los iones de hidronio en una solución.
- pOH
- medida logarítmica de la concentración de los iones de hidróxido en una solución.
Contribuyentes
Paul Flowers (Universidad de Carolina del Norte - Pembroke), Klaus Theopold (Universidad de Delaware) y Richard Langley (Stephen F. Austin Universidad del Estado) con autores contribuyentes. Contenido del libro de texto producido por la Universidad de OpenStax tiene licencia de Atribución de Creative Commons Licencia 4.0 licencia. Descarge gratis en http://cnx.org/contents/85abf193-2bd...a7ac8df6@9.110)."
Ana Martinez (amartinez02@saintmarys.edu) contribuyó a la traducción de este texto.