Saltar al contenido principal
LibreTexts Español

3: Espectroscopias no lineales de tercer orden

  • Page ID
    73646
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Third-order nonlinear spectroscopies are the most widely used class of nonlinear methods, including the common pump-probe experiment. This section will discuss a number of these methods. The approach here is meant to be practical, with the emphasis on trying to connect the particular signals with their microscopic origin. This approach can be used for describing any experiment in terms of the wave-vector, frequency and time-ordering of the input fields, and the frequency and wavevector of the signal.

    • 3.1: Selección de señales por wavevector
      La pregunta es cómo seleccionar contribuciones particulares a la señal. No será posible seleccionar de forma única diagramas particulares. Sin embargo, puede utilizar las propiedades del incidente y campos detectados para ayudar con la selectividad.
    • 3.2: Eco de fotones
      El experimento de eco de fotones se usa más comúnmente para distinguir el ensanchamiento de línea estático y dinámico, y las escalas de tiempo para las fluctuaciones de la brecha de energía.
    • 3.3: Rejilla Transitoria
      La rejilla transitoria es una técnica de tercer orden utilizada para caracterizar numerosos procesos de relajación, pero es especialmente adecuada para observar excitaciones ópticas con período espacial bien definido.
    • 3.4: Bomba-Sonda
      El experimento bomba-sonda o absorción transitoria es quizás el experimento no lineal de tercer orden más utilizado. Se puede utilizar para seguir muchos tipos de procesos de relajación dependientes del tiempo y dinámicas químicas, y se usa más comúnmente para seguir la relajación poblacional, cinética química o dinámica de wavepacket y ritmos cuánticos.
    • 3.5: COCHES (Dispersión coherente anti-Stoke Raman)


    This page titled 3: Espectroscopias no lineales de tercer orden is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.