1.E: Fundamentos de álgebra (Ejercicios)
- Page ID
- 109798
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Ejercicio\(\PageIndex{1}\)
Reducir a los términos más bajos.
- \(\frac{56}{120}\)
- \(\frac{54}{60}\)
- \(\frac{155}{90}\)
- \(\frac{315}{120}\)
- Contestar
-
1. \(\frac{7}{15}\)
3. \(\frac{31}{18}\)
Ejercicio\(\PageIndex{2}\)
Simplificar.
- \(- \left( - \frac { 1 } { 2 } \right)\)
- \(- \left( - \left( - \frac { 5 } { 8 } \right) \right)\)
- \(- ( - ( - a ) )\)
- \(- ( - ( - ( - a ) ) )\)
- Contestar
-
1. \(\frac{1}{2}\)
3. \(-a\)
Ejercicio\(\PageIndex{3}\)
Grafique el conjunto de soluciones y dé la notación de intervalo equivalente.
- \(x \geq - 10\)
- \(x < 0\)
- \(- 8 \leq x < 0\)
- \(- 10 < x \leq 4\)
- \(x < 3 \text { and } x \geq - 1\)
- \(x < 0 \text { and } x > 1\)
- \(x < - 2 \text { or } x > - 6\)
- \(x \leq - 1 \text { or } x > 3\)
- Contestar
-
1. \([ - 10 , \infty )\);
Figura 1.E.1
3. \([ - 8,0 )\);
Figura 1.E.2
5. \([ - 1,3 )\);
Figura 1.E.3
7. \(\mathbb { R }\)
Figura 1.E.4
Ejercicio\(\PageIndex{4}\)
Determinar la desigualdad que corresponde al conjunto expresado mediante notación de intervalos.
- \([ - 8 , \infty )\)
- \(( - \infty , - 7 )\)
- \([ 12,32 ]\)
- \([ - 10,0 )\)
- \(( - \infty , 1 ] \cup ( 5 , \infty )\)
- \(( - \infty , - 10 ) \cup ( - 5 , \infty )\)
- \(( - 4 , \infty )\)
- \(( - \infty , 0 )\)
- Contestar
-
1. \(x \geq - 8\)
3. \(12 \leq x \leq 32\)
5. \(x \leq 1 \text { or } x > 5\)
7. \(x > - 4\)
Ejercicio\(\PageIndex{5}\)
Simplificar.
- \(- \left| - \frac { 3 } { 4 } \right|\)
- \(- \left| - \left( - \frac { 2 } { 3 } \right) \right|\)
- \(- ( - | - 4 | )\)
- \(- ( - ( - | - 3 | ) )\)
- Contestar
-
1. \(-\frac{3}{4}\)
3. \(4\)
Ejercicio\(\PageIndex{6}\)
Determinar los valores representados por\(a\).
- \(| a | = 6\)
- \(| a | = 1\)
- \(| a | = - 5\)
- \(| a | = a\)
- Contestar
-
1. \(a = \pm 6\)
2. \(\varnothing\)
Ejercicio\(\PageIndex{7}\)
Realizar las operaciones.
- \(\frac { 1 } { 4 } - \frac { 1 } { 5 } + \frac { 3 } { 20 }\)
- \(\frac { 2 } { 3 } - \left( - \frac { 3 } { 4 } \right) - \frac { 5 } { 12 }\)
- \(\frac { 5 } { 3 } \left( - \frac { 6 } { 7 } \right) \div \left( \frac { 5 } { 14 } \right)\)
- \(\left( - \frac { 8 } { 9 } \right) \div \frac { 16 } { 27 } \left( \frac { 2 } { 15 } \right)\)
- \(\left( - \frac { 2 } { 3 } \right) ^ { 3 }\)
- \(\left( - \frac { 3 } { 4 } \right) ^ { 2 }\)
- \(( - 7 ) ^ { 2 } - 8 ^ { 2 }\)
- \(- 4 ^ { 2 } + ( - 4 ) ^ { 3 }\)
- \(10 - 8 \left( ( 3 - 5 ) ^ { 2 } - 2 \right)\)
- \(4 + 5 \left( 3 - ( 2 - 3 ) ^ { 2 } \right)\)
- \(- 3 ^ { 2 } - \left( 7 - ( - 4 + 2 ) ^ { 3 } \right)\)
- \(( - 4 + 1 ) ^ { 2 } - ( 3 - 6 ) ^ { 3 }\)
- \(\frac { 10 - 3 ( - 2 ) ^ { 3 } } { 3 ^ { 2 } - ( - 4 ) ^ { 2 } }\)
- \(\frac { 6 \left[ ( - 5 ) ^ { 2 } - ( - 3 ) ^ { 2 } \right] } { 4 - 6 ( - 2 ) ^ { 2 } }\)
- \(7 - 3 \left| 6 - ( - 3 - 2 ) ^ { 2 } \right|\)
- \(- 6 ^ { 2 } + 5 \left| 3 - 2 ( - 2 ) ^ { 2 } \right|\)
- \(\frac { 12 - \left| 6 - 2 ( - 4 ) ^ { 2 } \right| } { 3 - | - 4 | }\)
- \(\frac { - ( 5 - 2 | - 3 | ) ^ { 3 } } { \left| 4 - ( - 3 ) ^ { 2 } \right| - 3 ^ { 2 } }\)
- Contestar
-
1. \(\frac{1}{5}\)
3. \(-4\)
5. \(-\frac{8}{27}\)
7. \(-15\)
9. \(-6\)
11. \(-24\)
13. \(-\frac{34}{7}\)
15. \(-50\)
17. \(14\)
Ejercicio\(\PageIndex{8}\)
Simplificar.
- \(3 \sqrt { 8 }\)
- \(5 \sqrt { 18 }\)
- \(6 \sqrt { 0 }\)
- \(\sqrt { - 6 }\)
- \(\sqrt { \frac { 75 } { 16 } }\)
- \(\sqrt { \frac { 80 } { 49 } }\)
- \(\sqrt [ 3 ] { 40 }\)
- \(\sqrt [ 3 ] { 81 }\)
- \(\sqrt [ 3 ] { - 81 }\)
- \(\sqrt [ 3 ] { - 32 }\)
- \(\sqrt [ 3 ] { \frac { 250 } { 27 } }\)
- \(\sqrt [ 3 ] { \frac { 1 } { 125 } }\)
- Contestar
-
1. \(6 \sqrt { 2 }\)
3. \(0\)
5. \(\frac { 5 \sqrt { 3 } } { 4 }\)
7. \(2 \sqrt [ 3 ] { 5 }\)
9. \(- 3 \sqrt [ 3 ] { 3 }\)
11. \(\frac { 5 \sqrt [ 3 ] { 2 } } { 3 }\)
Ejercicio\(\PageIndex{9}\)
Use una calculadora para aproximar lo siguiente a la milésima más cercana.
- \(\sqrt { 12 }\)
- \(3 \sqrt { 14 }\)
- \(\sqrt [ 3 ] { 18 }\)
- \(7 \sqrt [ 3 ] { 25 }\)
- Encuentra la longitud de la diagonal de un cuadrado con lados que miden\(8\) centímetros.
- Encuentra la longitud de la diagonal de un rectángulo con lados que miden\(6\) centímetros y\(12\) centímetros.
- Contestar
-
1. \(3.464\)
3. \(2.621\)
5. \(8 \sqrt { 2 }\)centímetros
Ejercicio\(\PageIndex{10}\)
Multiplicar
- \(\frac { 2 } { 3 } \left( 9 x ^ { 2 } + 3 x - 6 \right)\)
- \(- 5 \left( \frac { 1 } { 5 } y ^ { 2 } - \frac { 3 } { 5 } y + \frac { 1 } { 2 } \right)\)
- \(\left( a ^ { 2 } - 5 a b - 2 b ^ { 2 } \right) ( - 3 )\)
- \(\left( 2 m ^ { 2 } - 3 m n + n ^ { 2 } \right) \cdot 6\)
- Contestar
-
1. \(6 x ^ { 2 } + 2 x - 4\)
3. \(- 3 a ^ { 2 } + 15 a b + 6 b ^ { 2 }\)
Ejercicio\(\PageIndex{11}\)
Combina términos similares.
- \(5 x ^ { 2 } y - 3 x y ^ { 2 } - 4 x ^ { 2 } y - 7 x y ^ { 2 }\)
- \(9 x ^ { 2 } y ^ { 2 } + 8 x y + 3 - 5 x ^ { 2 } y ^ { 2 } - 8 x y - 2\)
- \(a ^ { 2 } b ^ { 2 } - 7 a b + 6 - a ^ { 2 } b ^ { 2 } + 12 a b - 5\)
- \(5 m ^ { 2 } n - 3 m n + 2 m n ^ { 2 } - 2 n m - 4 m ^ { 2 } n + m n ^ { 2 }\)
- Contestar
-
1. \(x ^ { 2 } y - 10 x y ^ { 2 }\)
3. \(5 a b + 1\)
Ejercicio\(\PageIndex{12}\)
Simplificar.
- \(5 x ^ { 2 } + 4 x - 3 \left( 2 x ^ { 2 } - 4 x - 1 \right)\)
- \(\left( 6 x ^ { 2 } y ^ { 2 } + 3 x y - 1 \right) - \left( 7 x ^ { 2 } y ^ { 2 } - 3 x y + 2 \right)\)
- \(a ^ { 2 } - b ^ { 2 } - \left( 2 a ^ { 2 } + a b - 3 b ^ { 2 } \right)\)
- \(m ^ { 2 } + m n - 6 \left( m ^ { 2 } - 3 n ^ { 2 } \right)\)
- Contestar
-
1. \(- x ^ { 2 } + 16 x + 3\)
3. \(- a ^ { 2 } - a b + 2 b ^ { 2 }\)
Ejercicio\(\PageIndex{13}\)
Evaluar.
- \(x ^ { 2 } - 3 x + 1 \text { where } x = - \frac { 1 } { 2 }\)
- \(x ^ { 2 } - x - 1 \text { where } x = - \frac { 2 } { 3 }\)
- \(a ^ { 4 } - b ^ { 4 } \text { where } a = - 3 \text { and } b = - 1\)
- \(a ^ { 2 } - 3 a b + 5 b ^ { 2 } \text { where } a = 4 \text { and } b = - 2\)
- \(( 2 x + 1 ) ( x - 3 ) \text { where } x = - 3\)
- \(( 3 x + 1 ) ( x + 5 ) \text { where } x = - 5\)
- \(\sqrt { b ^ { 2 } - 4 a c } \text { where } a = 2 , b = - 4 , \text { and } c = - 1\)
- \(\sqrt { b ^ { 2 } - 4 a c } \text { where } a = 3 , b = - 6 , \text { and } c = - 2\)
- \(\pi r ^ { 2 } h \text { where } r = 2 \sqrt { 3 } \text { and } h = 5\)
- \(\frac { 4 } { 3 } \pi r ^ { 3 } \text { where } r = 2 \sqrt [ 3 ] { 6 }\)
- ¿Cuál es el interés simple que se gana en una inversión\(4\) anual de\($4,500\) a una tasa de interés anual de\(4 \frac{3}{4}\)%?
- James viajó a una velocidad promedio de\(48\) millas por hora durante\(2 \frac{1}{4}\) horas. ¿Qué tan lejos viajó?
- El periodo de un péndulo\(T\) en segundos viene dado por la fórmula\(T = 2 \pi \sqrt { \frac { L } { 32 } }\) donde\(L\) representa su longitud en pies. Aproximar el periodo de un péndulo con longitud\(2\) pies. Redondear a la décima de pie más cercana.
- La distancia promedio\(d\), en millas, una persona puede ver un objeto viene dada por la fórmula\(d = \frac { \sqrt { 6 h } } { 2 }\) donde\(h\) representa la altura de la persona sobre el suelo, medida en pies. ¿Qué distancia promedio puede una persona ver un objeto desde una altura de\(10\) pies? Redondear a la décima de milla más cercana.
- Contestar
-
1. \(\frac{11}{4}\)
3. \(80\)
5. \(30\)
7. \(2 \sqrt { 6 }\)
9. \(60 \pi\)
11. \(\$ 855\)
13. \(1.6\)segundos
Ejercicio\(\PageIndex{14}\)
Multiplicar.
- \(\frac { x ^ { 10 } \cdot x ^ { 2 } } { x ^ { 5 } }\)
- \(\frac { x ^ { 6 } \left( x ^ { 2 } \right) ^ { 4 } } { x ^ { 3 } }\)
- \(- 7 x ^ { 2 } y z ^ { 3 } \cdot 3 x ^ { 4 } y ^ { 2 } z\)
- \(3 a ^ { 2 } b ^ { 3 } c \left( - 4 a ^ { 2 } b c ^ { 4 } \right) ^ { 2 }\)
- \(\frac { - 10 a ^ { 5 } b ^ { 0 } c ^ { - 4 } } { 25 a ^ { - 2 } b ^ { 2 } c ^ { - 3 } }\)
- \(\frac { - 12 x ^ { - 6 } y ^ { - 2 } z } { 36 x ^ { - 3 } y ^ { 4 } z ^ { 6 } }\)
- \(\left( - 2 x ^ { - 5 } y ^ { - 3 } z \right) ^ { - 4 }\)
- \(\left( 3 x ^ { 6 } y ^ { - 3 } z ^ { 0 } \right) ^ { - 3 }\)
- \(\left( \frac { - 5 a ^ { 2 } b ^ { 3 } } { c ^ { 5 } } \right) ^ { 2 }\)
- \(\left( \frac { - 3 m ^ { 5 } } { 5 n ^ { 2 } } \right) ^ { 3 }\)
- \(\left( \frac { - 2 a ^ { - 2 } b ^ { 3 } c } { 3 a b ^ { - 2 } c ^ { 0 } } \right) ^ { - 3 }\)
- \(\left( \frac { 6 a ^ { 3 } b ^ { - 3 } c } { 2 a ^ { 7 } b ^ { 0 } c ^ { - 4 } } \right) ^ { - 2 }\)
- Contestar
-
1. \(x ^ { 7 }\)
3. \(- 21 x ^ { 6 } y ^ { 3 } z ^ { 4 }\)
5. \(- \frac { 2 a ^ { 7 } } { 5 b ^ { 2 } c }\)
7. \(\frac { x ^ { 20 } y ^ { 12 } } { 16 z ^ { 4 } }\)
9. \(\frac { 25 a ^ { 4 } b ^ { 6 } } { c ^ { 10 } }\)
11. \(- \frac { 27 a ^ { 9 } } { 8 b ^ { 15 } c ^ { 3 } }\)
Ejercicio\(\PageIndex{15}\)
Realizar las operaciones.
- \(\left( 4.3 \times 10 ^ { 22 } \right) \left( 3.1 \times 10 ^ { - 8 } \right)\)
- \(\left( 6.8 \times 10 ^ { - 33 } \right) \left( 1.6 \times 10 ^ { 7 } \right)\)
- \(\frac { 1.4 \times 10 ^ { - 32 } } { 2 \times 10 ^ { - 10 } }\)
- \(\frac { 1.15 \times 10 ^ { 26 } } { 2.3 \times 10 ^ { - 7 } }\)
- El valor de una tableta nueva en dólares se puede estimar utilizando la fórmula\(v = 450(t + 1)^{ −1}\) donde\(t\) representa el número de años después de su compra. Utilice la fórmula para estimar el valor de la computadora tablet\(2 \frac{1}{2}\) años después de su compra.
- La velocidad de la luz es de aproximadamente\(6.7 × 10^{8}\) millas por hora. Exprese esta velocidad en millas por minuto y determine la distancia que recorre la luz en\(4\) minutos.
- Contestar
-
1. \(1.333 \times 10 ^ { 15 }\)
3. \(7 \times 10 ^ { - 23 }\)
5. \(\$ 128.57\)
Ejercicio\(\PageIndex{16}\)
Simplificar.
- \(\left( x ^ { 2 } + 3 x - 5 \right) - \left( 2 x ^ { 2 } + 5 x - 7 \right)\)
- \(\left( 6 x ^ { 2 } - 3 x + 5 \right) + \left( 9 x ^ { 2 } + 3 x - 4 \right)\)
- \(\left( a ^ { 2 } b ^ { 2 } - a b + 6 \right) - ( a b + 9 ) + \left( a ^ { 2 } b ^ { 2 } - 10 \right)\)
- \(\left( x ^ { 2 } - 2 y ^ { 2 } \right) - \left( x ^ { 2 } + 3 x y - y ^ { 2 } \right) - \left( 3 x y + y ^ { 2 } \right)\)
- \(- \frac { 3 } { 4 } \left( 16 x ^ { 2 } + 8 x - 4 \right)\)
- \(6 \left( \frac { 4 } { 3 } x ^ { 2 } - \frac { 3 } { 2 } x + \frac { 5 } { 6 } \right)\)
- \(( 2 x + 5 ) ( x - 4 )\)
- \(( 3 x - 2 ) \left( x ^ { 2 } - 5 x + 2 \right)\)
- \(\left( x ^ { 2 } - 2 x + 5 \right) \left( 2 x ^ { 2 } - x + 4 \right)\)
- \(\left( a ^ { 2 } + b ^ { 2 } \right) \left( a ^ { 2 } - b ^ { 2 } \right)\)
- \(( 2 a + b ) \left( 4 a ^ { 2 } - 2 a b + b ^ { 2 } \right)\)
- \(( 2 x - 3 ) ^ { 2 }\)
- \(( 3 x - 1 ) ^ { 3 }\)
- \(( 2 x + 3 ) ^ { 4 }\)
- \(\left( x ^ { 2 } - y ^ { 2 } \right) ^ { 2 }\)
- \(\left( x ^ { 2 } y ^ { 2 } + 1 \right) ^ { 2 }\)
- \(\frac { 27 a ^ { 2 } b - 9 a b + 81 a b ^ { 2 } } { 3 a b }\)
- \(\frac { 125 x ^ { 3 } y ^ { 3 } - 25 x ^ { 2 } y ^ { 2 } + 5 x y ^ { 2 } } { 5 x y ^ { 2 } }\)
- \(\frac { 2 x ^ { 3 } - 7 x ^ { 2 } + 7 x - 2 } { 2 x - 1 }\)
- \(\frac { 12 x ^ { 3 } + 5 x ^ { 2 } - 7 x - 3 } { 4 x + 3 }\)
- \(\frac { 5 x ^ { 3 } - 21 x ^ { 2 } + 6 x - 3 } { x - 4 }\)
- \(\frac { x ^ { 4 } + x ^ { 3 } - 3 x ^ { 2 } + 10 x - 1 } { x + 3 }\)
- \(\frac { a ^ { 4 } - a ^ { 3 } + 4 a ^ { 2 } - 2 a + 4 } { a ^ { 2 } + 2 }\)
- \(\frac { 8 a ^ { 4 } - 10 } { a ^ { 2 } - 2 }\)
- Contestar
-
1. \(- x ^ { 2 } - 2 x + 2\)
3. \(2 a ^ { 2 } b ^ { 2 } - 2 a b - 13\)
5. \(- 12 x ^ { 2 } - 6 x + 3\)
7. \(2 x ^ { 2 } - 3 x - 20\)
9. \(2 x ^ { 4 } - 5 x ^ { 3 } + 16 x ^ { 2 } - 13 x + 20\)
11. \(8 a ^ { 3 } + b ^ { 3 }\)
13. \(27 x ^ { 3 } - 27 x ^ { 2 } + 9 x - 1\)
15. \(x ^ { 4 } - 2 x ^ { 2 } y ^ { 2 } + y ^ { 4 }\)
17. \(9 a + 27 b - 3\)
19. \(x ^ { 2 } - 3 x + 2\)
21. \(5 x ^ { 2 } - x + 2 + \frac { 5 } { x - 4 }\)
23. \(a ^ { 2 } - a + 2\)
Ejercicio\(\PageIndex{17}\)
Resolver.
- \(6 x - 8 = 2\)
- \(12 x - 5 = 3\)
- \(\frac { 5 } { 4 } x - 3 = \frac { 1 } { 2 }\)
- \(\frac { 5 } { 6 } x - \frac { 1 } { 4 } = \frac { 3 } { 2 }\)
- \(\frac { 9 x + 2 } { 3 } = \frac { 5 } { 6 }\)
- \(\frac { 3 x - 8 } { 10 } = \frac { 5 } { 2 }\)
- \(3 a - 5 - 2 a = 4 a - 6\)
- \(8 - 5 y + 2 = 4 - 7 y\)
- \(5 x - 6 - 8 x = 1 - 3 x\)
- \(17 - 6 x - 10 = 5 x + 7 - 11 x\)
- \(5 ( 3 x + 3 ) - ( 10 x - 4 ) = 4\)
- \(6 - 2 ( 3 x - 1 ) = - 4 ( 1 - 3 x )\)
- \(9 - 3 ( 2 x + 3 ) + 6 x = 0\)
- \(- 5 ( x + 2 ) - ( 4 - 5 x ) = 1\)
- \(\frac { 5 } { 9 } ( 6 y + 27 ) = 2 - \frac { 1 } { 3 } ( 2 y + 3 )\)
- \(4 - \frac { 4 } { 5 } ( 3 a + 10 ) = \frac { 1 } { 10 } ( 4 - 2 a )\)
- Resolver para\(s : A = \pi r ^ { 2 } + \pi r s\)
- Resolver para\(x : y = m x + b\)
- Un entero más grande es\(3\) más de dos veces otro. Si su suma dividida por\(2\) es\(9\), encuentra los enteros.
- La suma de tres enteros impares consecutivos es\(171\). Encuentra los enteros.
- La longitud de un rectángulo es\(3\) metros menos del doble de su ancho. Si el perímetro mide\(66\) metros, encuentra el largo y ancho.
- ¿Cuánto tiempo se tardará\($124\) en\($500\) ganar en intereses simples ganando\(6.2\)% interés anual?
- Sally tardó\(3 \frac{1}{2}\) horas en conducir los\(147\) kilómetros a casa desde la casa de su abuela. ¿Cuál era su velocidad promedio?
- Jeannine invirtió su bono de\($8,300\) en dos cuentas. Una cuenta ganó\(3 \frac{1}{2}\)% interés simple y la otra ganó\(4 \frac{3}{4}\)% interés simple. Si su interés total por un año fue\($341.75\), ¿cuánto invirtió en cada cuenta?
- Contestar
-
1. \(\frac{5}{3}\)
3. \(\frac{14}{5}\)
5. \(\frac{1}{18}\)
7. \(\frac{1}{3}\)
9. \(\varnothing\)
11. \(-3\)
13. \(\mathbb { R }\)
15. \(-\frac{7}{2}\)
17. \(s = \frac { A - \pi r ^ { 2 } } { \pi r }\)
19. \(5,13\)
21. Largo:\(21\) metros; Ancho:\(12\) metros
23. \(42\)millas por hora
Ejercicio\(\PageIndex{18}\)
Resolver. Grafique todas las soluciones en una recta numérica y proporcione la notación de intervalo correspondiente.
- \(5 x - 7 < 18\)
- \(2 x - 1 > 2\)
- \(9 - x \leq 3\)
- \(3 - 7 x \geq 10\)
- \(61 - 3 ( x + 3 ) > 13\)
- \(7 - 3 ( 2 x - 1 ) \geq 6\)
- \(\frac { 1 } { 3 } ( 9 x + 15 ) - \frac { 1 } { 2 } ( 6 x - 1 ) < 0\)
- \(\frac { 2 } { 3 } ( 12 x - 1 ) + \frac { 1 } { 4 } ( 1 - 32 x ) < 0\)
- \(20 + 4 ( 2 a - 3 ) \geq \frac { 1 } { 2 } a + 2\)
- \(\frac { 1 } { 3 } \left( 2 x + \frac { 3 } { 2 } \right) - \frac { 1 } { 4 } x < \frac { 1 } { 2 } \left( 1 - \frac { 1 } { 2 } x \right)\)
- \(- 4 \leq 3 x + 5 < 11\)
- \(5 < 2 x + 15 \leq 13\)
- \(- 1 < 4 ( x + 1 ) - 1 < 9\)
- \(0 \leq 3 ( 2 x - 3 ) + 1 \leq 10\)
- \(- 1 < \frac { 2 x - 5 } { 4 } < 1\)
- \(- 2 \leq \frac { 3 - x } { 3 } < 1\)
- \(2 x + 3 < 13 \text { and } 4 x - 1 > 10\)
- \(3 x - 1 \leq 8 \text { and } 2 x + 5 \geq 23\)
- \(5 x - 3 < - 2 \text { or } 5 x - 3 > 2\)
- \(1 - 3 x \leq - 1 \text { or } 1 - 3 x \geq 1\)
- \(5 x + 6 < 6 \text { or } 9 x - 2 > - 11\)
- \(2 ( 3 x - 1 ) < - 16 \text { or } 3 ( 1 - 2 x ) < - 15\)
- Jerry anotó\(90, 85, 92\), y\(76\) en los primeros cuatro exámenes de álgebra. ¿Qué debe puntuar en el quinto examen para que su promedio sea al menos\(80\)?
- Si\(6\) grados menores que\(3\) veces un ángulo es entre\(90\) grados y\(180\) grados, entonces ¿cuáles son los límites del ángulo original?
- Contestar
-
1. \(( - \infty , 5 )\);
Figura 1.E.5
3. \([ 6 , \infty )\);
Figura 1.E.6
5. \(( - \infty , 13 )\);
Figura 1.E.7
7. \(\varnothing\);
Figura 1.E.8
9. \(\left[ - \frac { 4 } { 5 } , \infty \right)\);
Figura 1.E.9
11. \([ - 3,2 )\);
Figura 1.E.10
13. \(\left( - 1 , \frac { 3 } { 2 } \right)\);
Figura 1.E.11
15. \(\left( \frac { 1 } { 2 } , \frac { 9 } { 2 } \right)\);
Figura 1.E.12
17. \(\left( \frac { 11 } { 4 } , 5 \right)\);
Figura 1.E.13
19. \(\left( - \infty , \frac { 1 } { 5 } \right) \cup ( 1 , \infty )\);
Figura 1.E.14
21. \(\mathbb { R }\);
Figura 1.E.15
23. Jerry debe anotar al menos\(57\) en el quinto examen.
Examen de muestra
Ejercicio\(\PageIndex{19}\)
Simplificar.
- \(5 - 3 \left( 12 - \left| 2 - 5 ^ { 2 } \right| \right)\)
- \(\left( - \frac { 1 } { 2 } \right) ^ { 2 } - \left( 3 - 2 \left| - \frac { 3 } { 4 } \right| \right) ^ { 3 }\)
- \(- 7 \sqrt { 60 }\)
- \(5 \sqrt [ 3 ] { - 32 }\)
- Encuentra la diagonal de un cuadrado con lados que miden\(6\) centímetros.
- Contestar
-
1. \(38\)
3. \(- 14 \sqrt { 15 }\)
5. \(6 \sqrt { 2 }\)centímetros
Ejercicio\(\PageIndex{20}\)
Simplificar
- \(- 5 x ^ { 2 } y z ^ { - 1 } \left( 3 x ^ { 3 } y ^ { - 2 } z \right)\)
- \(\left( \frac { - 2 a ^ { - 4 } b ^ { 2 } c } { a ^ { - 3 } b ^ { 0 } c ^ { 2 } } \right) ^ { - 3 }\)
- \(2 \left( 3 a ^ { 2 } b ^ { 2 } + 2 a b - 1 \right) - a ^ { 2 } b ^ { 2 } + 2 a b - 1\)
- \(\left( x ^ { 2 } - 6 x + 9 \right) - \left( 3 x ^ { 2 } - 7 x + 2 \right)\)
- \(( 2 x - 3 ) ^ { 3 }\)
- \(( 3 a - b ) \left( 9 a ^ { 2 } + 3 a b + b ^ { 2 } \right)\)
- \(\frac { 6 x ^ { 4 } - 17 x ^ { 3 } + 16 x ^ { 2 } - 18 x + 13 } { 2 x - 3 }\)
- Contestar
-
2. \(- \frac { a ^ { 3 } c ^ { 3 } } { 8 b ^ { 6 } }\)
4. \(- 2 x ^ { 2 } + x + 7\)
6. \(27 a ^ { 3 } - b ^ { 3 }\)
Ejercicio\(\PageIndex{21}\)
Resolver.
- \(\frac { 4 } { 5 } x - \frac { 2 } { 15 } = 2\)
- \(\frac { 3 } { 4 } ( 8 x - 12 ) - \frac { 1 } { 2 } ( 2 x - 10 ) = 16\)
- \(12 - 5 ( 3 x - 1 ) = 2 ( 4 x + 3 )\)
- \(\frac { 1 } { 2 } ( 12 x - 2 ) + 5 = 4 \left( \frac { 3 } { 2 } x - 8 \right)\)
- Resolver para\(y : a x + b y = c\)
- Contestar
-
1. \(\frac{8}{3}\)
3. \(\frac{11}{23}\)
5. \(y = \frac { c - a x } { b }\)
Ejercicio\(\PageIndex{22}\)
Resolver. Grafique las soluciones en una recta numérica y dé la notación de intervalo correspondiente.
- \(2 ( 3 x - 5 ) - ( 7 x - 3 ) \geq 0\)
- \(2 ( 4 x - 1 ) - 4 ( 5 + 2 x ) < - 10\)
- \(- 6 \leq \frac { 1 } { 4 } ( 2 x - 8 ) < 4\)
- \(3 x - 7 > 14 \text { or } 3 x - 7 < - 14\)
- Contestar
-
2. \(\mathbb { R }\);
Figura 1.E.16
4. \(\left( - \infty , - \frac { 7 } { 3 } \right) \cup ( 7 , \infty )\);
Figura 1.E.17
Ejercicio\(\PageIndex{23}\)
Usa álgebra para resolver lo siguiente.
- Grados Fahrenheit\(F\) viene dado por la fórmula\(F = \frac{9}{5} C + 32\) donde C representa grados Celsius. ¿Cuál es el equivalente Fahrenheit a\(35\)° Celsius?
- La longitud de un rectángulo es\(5\) pulgadas menos que su ancho. Si el perímetro es\(134\) pulgadas, encuentra el largo y ancho del rectángulo.
- Melanie invirtió\(4,500\) en dos cuentas separadas. Ella invirtió parte en un CD que ganaba\(3.2\)% interés simple y el resto en una cuenta de ahorro que ganaba\(2.8\)% interés simple. Si el interés simple total de un año fue\($138.80\), ¿cuánto invirtió en cada cuenta?
- Un auto de alquiler cuesta\($45.00\) por día más\($0.48\) por milla conducida. Si el costo total de un alquiler de un día es como máximo\($105\), ¿cuántas millas se pueden conducir?
- Contestar
-
2. Largo:\(31\) pulgadas; ancho:\(36\) pulgadas
4. El automóvil se puede conducir como máximo en\(125\) millas.