1.9E: Ejercicios
- Page ID
- 110452
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La práctica hace la perfección
Simplifique las expresiones con raíces cuadradas
En los siguientes ejercicios, simplifique.
659. \(\sqrt{36}\)
660. \(\sqrt{4}\)
661. \(\sqrt{64}\)
662. \(\sqrt{169}\)
663. \(\sqrt{9}\)
664. \(\sqrt{16}\)
665. \(\sqrt{100}\)
666. \(\sqrt{144}\)
667. \(\sqrt{−4}\)
668. \(\sqrt{−100}\)
669. \(\sqrt{−1}\)
670. \(\sqrt{−121}\)
Identificar números enteros, números racionales, números irracionales y números reales
En los siguientes ejercicios, escribe como la relación de dos enteros.
671.
ⓐ 5 ⓑ 3.19
672.
ⓐ 8 ⓑ 1.61
673.
ⓐ −12−12 ⓑ 9.279
674.
ⓐ −16−16 ⓑ 4.399
En los siguientes ejercicios, enumere los ⓐ números racionales, ⓑ números irracionales
675.
0.75,0.223—,1.391740.75,0.223—,1.39174
676.
0.36,0.94729... ,2.528—0.36,0.94729... ,2.528—
677.
0.45—,1.919293... ,3.590.45—,1.919293... ,3.59
678.
0.13—,0.42982... ,1.8750.13—,0.42982... ,1.875
En los siguientes ejercicios, identificar si cada número es racional o irracional.
679.
ⓐ 25√25 ⓑ 30√30
680.
ⓐ 44√44 ⓑ 49√49
681.
ⓐ 164√164 ⓑ 169√169
682.
ⓐ 225√225 ⓑ 216√216
En los siguientes ejercicios, identifica si cada número es un número real o no un número real.
683.
ⓐ −81√−81 ⓑ −121√−121
684.
ⓐ −64√−64 ⓑ −9√−9
685.
ⓐ −36√−36 ⓑ −144√−144
686.
ⓐ −49√−49 ⓑ −144√−144
En los siguientes ejercicios, enumere los ⓐ números enteros, ⓑ enteros, ⓒ números racionales, ⓓ números irracionales, ⓔ números reales para cada conjunto de números.
687.
−8,0,1.95286... ,125,36√,9−8,0,1.95286... ,125,36,9
688.
−9, −349, −9√,0.409—,116,7−9, −349, −9,0.409—,116,7
689.
−100√, −7, −83, −1,0.77,314−100, −7, −83, −1,0.77,314
690.
−6, −52,0,0.714285———,215,14√−6, −52,0,0.714285———,215,14
Localizar fracciones en la línea numérica
En los siguientes ejercicios, ubique los números en una recta numérica.
691.
34,85,10334,85,103
692.
14,95,11314,95,113
693.
310,72,116,4310,72,116,4
694.
710,52,138,3710,52,138,3
695.
25, −2525, −25
696.
34, −3434, −34
697.
34, −34,123, −123,52, −5234, −34,123, −123,52, −52
698.
15, −25,134, −134,83, −8315, −25,134, −134,83, −83
En los siguientes ejercicios, ordene cada uno de los pares de números, utilizando < or >.
699.
−1___−14−1___−14
700.
−1___−13−1___−13
701.
−212___−3−212___−3
702.
−134___−2−134___−2
703.
−512___−712−512___−712
704.
−910___−310−910___−310
705.
−3___−135−3___−135
706.
−4___−236−4___−236
Localizar decimales en la línea numérica En los siguientes ejercicios, ubique el número en la recta numérica.
707.
0.8
708.
−0.9−0.9
709.
−1.6−1.6
710.
3.1
En los siguientes ejercicios, ordene cada par de números, utilizando < or >.
711.
0.37___0.630.37___0.63
712.
0.86___0.690.86___0.69
713.
0.91___0.9010.91___0.901
714.
0.415___0.410.415___0.41
715.
−0.5___−0.3−0.5___−0.3
716.
−0.1___−0.4−0.1___−0.4
717.
−0.62___−0.619−0.62___−0.619
718.
−7.31___−7.3−7.31___−7.3
Matemáticas cotidianas
719.
Excursión Todos los alumnos de 5to grado de la Escuela Primaria Lincoln irán de excursión al museo de ciencias. Contando a todos los niños, maestros y chaperones, habrá 147 personas. Cada autobús tiene capacidad para 44 personas.
ⓐ ¿Cuántos buses se necesitarán?
ⓑ ¿Por qué la respuesta debe ser un número entero?
ⓒ ¿Por qué no deberías redondear la respuesta de la manera habitual, eligiendo el número entero más cercano a la respuesta exacta?
720.
Cuidado infantil Serena quiere abrir un centro de cuidado infantil con licencia. Su estado requiere que no haya más de 12 niños por cada maestro. A ella le gustaría que su centro de cuidado infantil atienda a 40 niños.
ⓐ ¿Cuántos profesores se necesitarán?
ⓑ ¿Por qué la respuesta debe ser un número entero?
ⓒ ¿Por qué no deberías redondear la respuesta de la manera habitual, eligiendo el número entero más cercano a la respuesta exacta?
Ejercicios de escritura
721.
En sus propias palabras, explique la diferencia entre un número racional y un número irracional.
722.
Explicar cómo los conjuntos de números (contar, enteros, enteros, racionales, irracionales, reales) se relacionan entre sí.
Autocomprobación
ⓐ Después de completar los ejercicios, usa esta lista de verificación para evaluar tu dominio del objetivo de esta sección.
ⓑ En una escala de 1−10,1−10, ¿cómo calificaría su dominio de esta sección a la luz de sus respuestas en la lista de verificación? ¿Cómo se puede mejorar esto?