Saltar al contenido principal
LibreTexts Español

7.8.E: Problemas en la Medida Lebesgue

  • Page ID
    113970
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Ejercicio\(\PageIndex{1}\)

    Rellene todos los detalles en la prueba de los Teoremas 3 y 4.

    Ejercicio\(\PageIndex{1'}\)

    Demostrar Nota 2.

    Ejercicio\(\PageIndex{2}\)

    Del Teorema 3 deducir que
    \[\left(\forall A \subseteq E^{n}\right)\left(\exists B \in \mathcal{G}_{\delta}\right) \quad A \subseteq B \text { and } m^{*} A=m B.\]
    [Pista: Ver la pista al Problema 7 en §5.]

    Ejercicio\(\PageIndex{3}\)

    Revisar Problema 3 en §5.

    Ejercicio\(\PageIndex{4}\)

    Considera todas las
    \[R+p \quad\left(p \in E^{1}\right)\]
    traducciones de
    \[R=\left\{\text {rationals in } E^{1}\right\}.\]
    Probar lo siguiente.
    (i) Cualquiera de esas dos traducciones son disjuntas o idénticas.
    (ii) Cada uno\(R+p\) contiene al menos un elemento de\([0,1]\).
    [Pista para (ii): Fijar un racional\(y \in(-p, 1-p),\) así\(0<y+p<1.\) Entonces\(y+p \in R+p\), y\(y+p \in[0,1]\).]

    Ejercicio\(\PageIndex{5}\)

    Continuando Problema 4, elige un elemento\(q \in[0,1]\) de cada\(R+p.\) Let\(Q\) Ser el conjunto de todos\(q\) así elegidos.
    Llamar a un traducir de\(Q, Q+r,\) “bueno” iff\(r \in R\) y\(|r|<1.\) Let\(U\) be the union of all “good” translate of\(Q.\)
    Probar lo siguiente.
    a) Sólo hay contablemente muchos “buenos”\(Q+r\).
    (b) Todos ellos yacen en\([-1,2]\).
    c) Dos cualesquiera de ellos son disjuntos o idénticos.
    d)\([0,1] \subseteq U \subseteq[-1,2] ;\) por lo tanto\(1 \leq m^{*} U \leq 3\).
    [Pista para (c): Supongamos
    \[y \in(Q+r) \cap\left(Q+r^{\prime}\right).\]

    \[y=q+r=q^{\prime}+r^{\prime} \quad\left(q, q^{\prime} \in Q, r, r^{\prime} \in R\right);\]
    Entonces así\(q=q^{\prime}+\left(r^{\prime}-r\right),\) con\(\left(r^{\prime}-r\right) \in R\).
    Así\(q \in R+q^{\prime}\) y\(q^{\prime}=0+q^{\prime} \in R+q^{\prime}.\) Deducir eso\(q=q^{\prime}\) y\(r=r^{\prime} =;\) por lo tanto\(Q+r=Q+r^{\prime}\).]

    Ejercicio\(\PageIndex{6}\)

    Demostrar que\(Q\) en el Problema 5 no es L-medible.
    [Pista: De lo contrario, por el Teorema 4, cada uno\(Q+r\) es L-medible, con\(m(Q+r)=m Q.\) Por 5 (a) (c),\(U\) es una unión disjunta contable de “bueno” traduce.
    Deducir que\(m U=0\) si\(m Q=0,\) o\(m U=\infty,\) contrario a lo dispuesto en el inciso d) del 5.]

    Ejercicio\(\PageIndex{7}\)

    Demuestre que si\(f : S \rightarrow T\) es continuo, entonces\(f^{-1}[X]\) es un Borel ambientado en\(S\) cada vez que\(X \in \mathcal{B}\) en\(T\).
    [Pista: Usando la Nota 1 en §7, mostrar que
    \[\mathcal{R}=\left\{X \subseteq T | f^{-1}[X] \in \mathcal{B} \text { in } S\right\}\]
    es un\(\sigma\) anillo -en\(T.\) As\(\mathcal{B}\) es el menos\(\sigma\) -anillo\(\supseteq \mathcal{G}, \mathcal{R} \supseteq \mathcal{B}\) (el campo Borel en\(T\).]

    Ejercicio\(\PageIndex{8}\)

    Demostrar que cada intervalo degenerado en\(E^{n}\) tiene medida Lebesgue\(0,\) aunque sea incontable. Dé un ejemplo en\(E^{2}.\) Demostrar la inccountabilidad.
    [Pista: Toma\(\overline{a}=(0,0), \overline{b}=(0,1).\) Definir\(f : E^{1} \rightarrow E^{2}\) por\(f(x)=(0, x).\) Show que\(f\) es uno a uno y esa\([\overline{a}, \overline{b}]\) es la\(f\) imagen -del Problema de\([0,1].\) Uso 2 del Capítulo 1, §9.]

    Ejercicio\(\PageIndex{9}\)

    Demuestre que no todos los conjuntos medibles en L son conjuntos de Borel\(E^{n}\).
    [Pista para\(E^{2}:\) Con\([\overline{a}, \overline{b}]\) y\(f\) como en Problema 8, mostrar que\(f\) es continuo (use el criterio secuencial). Como\(m[\overline{a}, \overline{b}]=0,\) todos los subconjuntos de\([\overline{a}, \overline{b}]\) están en\(\mathcal{M}^{*}\) (Teorema 2 (i)), de ahí en\(\mathcal{B}\) si asumimos\(\mathcal{M}^{*}=\mathcal{B}\). Pero entonces por el Problema 7, lo mismo se aplicaría a los subconjuntos de\([0,1],\) contrarios al Problema 6.
    Dar una prueba similar para\(E^{n}(n>1)\).
    Nota: En\(E^{1},\) también,\(\mathcal{B} \neq \mathcal{M}^{*},\) pero es necesaria una prueba diferente. Lo omitimos.]

    Ejercicio\(\PageIndex{10}\)

    Demostrar que el conjunto de Cantor\(P\) (Problema 17 en el Capítulo 3, 14) tiene Lebesgue medida cero, aunque sea incontable.
    [Esquema: Que
    \[U=[0,1]-P;\]
    así\(U\) sea la unión de intervalos abiertos quitada de\([0,1].\) Mostrar eso
    \[m U=\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=1\]
    y usar Lemma 1 en §4.]

    Ejercicio\(\PageIndex{11}\)

    \(\mu : \mathcal{B} \rightarrow E^{*}\)Sea la restricción de Borel de la medida Lebesgue\(m\) en\(E^{n}\) (§7). Demostrar que
    (i)\(\mu\) en incompleto;
    (ii)\(m\) es la extensión Lebesgue (* y finalización, como en el Problema 15 de §6) de\(\mu.\)
    [Consejos: (i) Por Problema 9, algunos conjuntos\(\mu\) -nulos no están en\(\mathcal{B}.\) (ii) Ver la prueba (final) del Teorema 2 en §9 (la siguiente sección).]

    Ejercicio\(\PageIndex{12}\)

    Demostrar lo siguiente.
    (i) Todos los intervalos\(E^{n}\) son conjuntos de Borel.
    (ii) El\(\sigma\) -anillo generado por alguna de las familias\(\mathcal{C}\) o\(\mathcal{C}^{\prime}\) en el Problema 3 de §5 coincide con el campo Borel en\(E^{n}.\)
    [Consejos: (i) Cualquier intervalo surge de uno cerrado al dejar caer algunas “caras” (intervalos cerrados degenerados). (ii) Usar Lema 2 de §2 y Problema 7 de §3.]

    Ejercicio\(\PageIndex{13*}\)

    Demostrar que si una medida\(m^{\prime}: \mathcal{M}^{\prime} \rightarrow E^{*}\) en\(E^{n}\) está de acuerdo en intervalos con la medida de Lebesgue\(m: \mathcal{M}^{*} \rightarrow E^{*},\) entonces lo siguiente es cierto.
    (i)\(m^{\prime}=m\) en\(\mathcal{B},\) el campo Borel en\(E^{n}\).
    (ii) Si también\(m^{\prime}\) está completo, entonces\(m^{\prime}=m\) adelante\(\mathcal{M}^{*}\).
    [Pista: (i) Uso Problema 13 de §5 y Problema 12 anterior.]

    Ejercicio\(\PageIndex{14}\)

    Mostrar que los globos de igual radio tienen la misma medida de Lebesgue.
    [Pista: Utilice el teorema 4.]

    Ejercicio\(\PageIndex{15}\)

    Vamos\(f : E^{n} \rightarrow E^{n},\) con
    \[f(\overline{x})=c \overline{x} \quad(0<c<\infty).\]
    Demostrar lo siguiente.
    (i)\((\forall A \subseteq E^{n}) m^{*} f[A]=c^{n} m^{*} A\) (Medida exterior de\(m^{*}=\) Lebesgue).
    ii)\(A \in \mathcal{M}^{*}\) iff\(f[A] \in \mathcal{M}^{*}\).
    [Pista: Si, digamos,\(A=(\overline{a}, \overline{b}],\) entonces\(f[A]=(c \overline{a}, c \overline{b}].\) (¿Por qué?) Proceder como en el Teorema 4, utilizando\(f^{-1}\) también.]

    Ejercicio\(\PageIndex{16}\)

    De los Problemas 14 y 15 muestran que
    (i)\(m G_{\overline{p}}(c r)=c^{n} \cdot m G_{\overline{p}}(r)\);
    (ii)\(m G_{\overline{p}}(r)=m \overline{G}_{\overline{p}}(r)\);
    (iii)\(m G_{\overline{p}}(r)=a \cdot m I,\) dónde\(I\) está inscrito el cubo\(G_{\overline{p}}(r)\) y
    \[a=\left(\frac{1}{2} \sqrt{n}\right)^{n} \cdot m G_{\overline{0}}(1).\]
    [Consejos: (i)\(f\left[G_{\overline{0}}(r)\right]=G_{\overline{0}}(c r).\) (ii) Demostrar que
    \[m G_{\overline{p}} \leq m \overline{G}_{\overline{p}} \leq c^{n} m G_{\overline{p}}\]
    si se\(c>1.\) deja\(c \rightarrow 1\).]

    Ejercicio\(\PageIndex{17}\)

    Dado\(a<b\) en\(E^{1},\) dejar\(\left\{r_{n}\right\}\) ser la secuencia de todos los racionales en\(A=[a, b].\)
    Set\((\forall n)\)
    \[\delta_{n}=\frac{b-a}{2^{n+1}}\]
    y
    \[G_{n}=\left(a_{n}, b_{n}\right)=(a, b) \cap\left(r_{n}-\frac{1}{2} \delta_{n}, r_{n}+\frac{1}{2} \delta_{n}\right).\]
    Let
    \[P=A-\bigcup_{n=1}^{\infty} G_{n}.\]
    Probar lo siguiente.
    (i)\(\sum_{n=1}^{\infty} \delta_{n}=\frac{1}{2}(b-a)=\frac{1}{2} m A\).
    (ii)\(P\) está cerrado;\(P^{o}=\emptyset,\) sin embargo\(m P>0\).
    (iii) La\(G_{n}\) puede hacerse disjunta (ver Problema 3 en §2), con\(m P\) todavía\(>0.\)
    (iv) Construir tal\(P \subseteq A\left(P=\overline{P}, P^{o}=\emptyset\right)\) medida prescrita\(m P=\varepsilon>0\).

    Ejercicio\(\PageIndex{18}\)

    Encuentra un set abierto\(G \subset E^{1},\) con\(m G<m \overline{G}<\infty.\)
    [Pista:\(G=\cup_{n=1}^{\infty} G_{n}\) con\(G_{n}\) como en Problema 17.]

    Ejercicio\(\PageIndex{19*}\)

    Si\(A \subseteq E^{n}\) es abierto y convexo, entonces\(m A=m \overline{A}\).
    [Pista: Primero\(\overline{0} \in A.\) Argumentemos como en el Problema 16.]


    7.8.E: Problemas en la Medida Lebesgue is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.