Saltar al contenido principal
LibreTexts Español

10.3: Integrales trigonométricas

  • Page ID
    109939
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    El truco aquí es armar algunas propiedades elementales de\(z = e^{i \theta}\) en el círculo unitario.

    1. \(e^{-i \theta} = 1/z.\)
    2. \(\cos (\theta) = \dfrac{e^{i \theta} + e^{-i \theta}}{2} = \dfrac{z + 1/z}{2}.\)
    3. \(\sin (\theta) = \dfrac{e^{i \theta} - e^{-i \theta}}{2i} = \dfrac{z - 1/z}{2i}.\)

    Empezamos con un ejemplo. Después de eso vamos a exponer un teorema más general.

    Ejemplo\(\PageIndex{1}\)

    Compute

    \[\int_{0}^{2\pi} \dfrac{d \theta}{1 + a^2 - 2a \cos (\theta)}.\]

    Asumir eso\(|a| \ne 1\).

    Solución

    Observe que\([0, 2\pi]\) es el intervalo utilizado para parametrizar el círculo unitario como\(z = e^{i \theta}\). Tenemos que hacer dos sustituciones:

    \[\begin{array} {rcl} {\cos (\theta)} & = & {\dfrac{z + 1/z}{2}} \\ {dz} & = & {i e^{i \theta} \ d\theta \ \ \ \ \Leftrightarrow \ \ \ \ d \theta = \dfrac{dz}{iz}} \end{array}\]

    Haciendo estas sustituciones obtenemos

    \[\begin{array} {rcl} {I} & = & {\int_{0}^{2\pi} \dfrac{d \theta}{1 + a^2 - 2a \cos (\theta)}} \\ {} & = & {\int_{|z| = 1} \dfrac{1}{1 + a^2 - 2a (z + 1/z)/2} \cdot \dfrac{dz}{iz}} \\ {} & = & {\int_{|z| = 1} \dfrac{1}{i((1 + a^2) z - a(z^2 +1))} \ dz.} \end{array}\]

    Entonces, vamos

    \[f(z) = \dfrac{1}{i((1 + a^2) z - a(z^2 + 1))}.\]

    El teorema del residuo implica

    \[I = 2\pi i \sum \text{ residues of } f \text{ inside the unit circle.}\]

    Podemos factorizar el denominador:

    \[f(z) = \dfrac{-1}{ia (z - a) (z - 1/a)}.\]

    Los polos están en\(a\),\(1/a\). Uno está dentro del círculo unitario y otro está afuera.

    Si\(|a| > 1\) entonces\(1/a\) está dentro del círculo de la unidad y\(\text{Res} (f, 1/a) = \dfrac{1}{i(a^2 - 1)}\)

    Si\(|a| < 1\) entonces\(a\) está dentro del círculo de la unidad y\(\text{Res} (f, a) = \dfrac{1}{i(1 - a^2)}\)

    Tenemos

    \[I = \begin{cases} \dfrac{2 \pi}{a^2 - 1} & \text{if } |a| > 1 \\ \dfrac{2 \pi}{1 - a^2} & \text{if } |a| < 1 \end{cases}\]

    El ejemplo ilustra una técnica general que exponemos ahora.

    Teorema\(\PageIndex{1}\)

    Supongamos que\(R(x, y)\) es una función racional sin polos en el círculo

    \[x^2 + y^2 = 1\]

    luego para

    \[f(z) = \dfrac{1}{iz} R (\dfrac{z + 1/z}{2}, \dfrac{z - 1/z}{2i})\]

    tenemos

    \[\int_{0}^{2\pi} R(\cos (\theta), \sin (\theta)) \ d \theta = 2 \pi i \sum \text{ residues of } f \text{ inside } |z| = 1.\]

    Prueba

    Hacemos las mismas sustituciones que en el Ejemplo 10.4.1. Entonces,

    \[\int_{0}^{2\pi} R(\cos (\theta), \sin (\theta)) \ d \theta = \int_{|z| = 1} R (\dfrac{z + 1/z}{2}, \dfrac{z - 1/z}{2i}) \dfrac{dz}{iz}\]

    La suposición sobre los polos significa que no\(f\) tiene polos en el contorno\(|z| = 1\). El teorema del residuo implica ahora el teorema.


    This page titled 10.3: Integrales trigonométricas is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.