Saltar al contenido principal
LibreTexts Español

10.2: Ecuación de Bessel

  • Page ID
    113692
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    La ecuación de orden\(\nu\) de Bessel viene dada por\[x^2 y'' + x y' + (x^2-\nu^2) y = 0. \nonumber \] Claramente\(x=0\) es un punto singular regular, por lo que podemos resolver por el método de Frobenius. La ecuación indicial se obtiene de la potencia más baja después de la sustitución\(y=x^\gamma\), y es

    \[\gamma^2-\nu^2=0 \nonumber \]

    Entonces una solución en serie generalizada da dos soluciones independientes si\(\nu \neq \frac{1}{2} n\). Ahora resolvamos el problema y sustituyamos explícitamente la serie power,

    \[y = x^\nu \sum_n a_n x^n. \nonumber \]

    De la ecuación de Bessel encontramos

    \[\sum_n(n+\nu)(n+\nu-1) a_\nu x^{m+\nu} +\sum_n(n+\nu)a_\nu x^{m+\nu} +\sum_n(x^2-\nu^2)a_\nu = 0 \nonumber \]

    lo que lleva a

    \[[(m+\nu)^2-\nu^2] a_m= -a_{m-2} \nonumber \]o\[a_m= -\frac{1}{m(m+2\nu)}a_{m-2}. \nonumber \]

    Si tomamos\(\nu=n>0\), tenemos

    \[a_m= -\frac{1}{m(m+2n)}a_{m-2}. \nonumber \]

    Esto se puede resolver por iteración,

    \[\begin{aligned} a_{2k} &= -\frac{1}{4}\frac{1}{k(k+n)}a_{2(k-1)}\nonumber\\ &= \left(\frac{1}{4}\right)^2\frac{1}{k(k-1)(k+n)(k+n-1)}a_{2(k-2)} \nonumber\\ &= \left(-\frac{1}{4}\right)^k\frac{n!}{k!(k+n)!}a_{0}.\end{aligned} \nonumber \]

    Si elegimos 1\(a_0 = \frac{1}{n!2^n}\) encontramos la función Bessel de orden\(n\)

    \[J_n(x) = \sum_{k=0}^\infty \frac{(-1)^k}{k!(k+n)!} \left(\frac{x}{2}\right)^{2k+n}. \nonumber \]

    Hay otra segunda solución independiente (que debería tener un logaritmo en ella) con va al infinito en\(x=0\).

    Una gráfica de las tres primeras funciones de Bessel <span translate=\ (J_n\) y\(Y_n\).” src=” https://math.libretexts.org/@api/dek...1844798941.png "/>

    Figura\(\PageIndex{1}\): Una gráfica de las tres primeras funciones de Bessel\(J_n\) y\(Y_n\).

    La solución general de la ecuación de orden de Bessel\(n\) es una combinación lineal de\(J\) y\(Y\),\[y(x) = A J_n(x)+B Y_n(x). \nonumber \]


    1. Esto se puede hacer ya que la ecuación de Bessel es lineal, es decir, si\(g(x)\) es una solución también\(C g(x)\) es una solución. ↩


    This page titled 10.2: Ecuación de Bessel is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Niels Walet via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.