Saltar al contenido principal

# 15.5E: Ejercicios para la Sección 15.5

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

En los ejercicios 1 - 8, evaluar las triples integrales$$\displaystyle \iiint_E f(x,y,z) \, dV$$ sobre el sólido$$E$$.

1. $$f(x,y,z) = z, \quad B = \big\{(x,y,z)\, | \,x^2 + y^2 \leq 9, \quad x \leq 0, \quad y \leq 0, \quad 0 \leq z \leq 1\big\}$$

Contestar
$$\frac{9\pi}{8}$$

2. $$f(x,y,z) = xz^2, \space B = \big\{(x,y,z)\, | \,x^2 + y^2 \leq 16, \space x \geq 0, \space y \leq 0, \space -1 \leq z \leq 1\big\}$$

3. $$f(x,y,z) = xy, \space B = \big\{(x,y,z)\, | \,x^2 + y^2 \leq 1, \space x \geq 0, \space x \geq y, \space -1 \leq z \leq 1\big\}$$

Contestar
$$\frac{1}{8}$$

4. $$f(x,y,z) = x^2 + y^2, \space B = \big\{(x,y,z)\, | \,x^2 + y^2 \leq 4, \space x \geq 0, \space x \leq y, \space 0 \leq z \leq 3\big\}$$

5. $$f(x,y,z) = e^{\sqrt{x^2+y^2}}, \space B = \big\{(x,y,z)\, | \,1 \leq x^2 + y^2 \leq 4, \space y \leq 0, \space x \leq y\sqrt{3}, \space 2 \leq z \leq 3 \big\}$$

Contestar
$$\frac{\pi e^2}{6}$$

6. $$f(x,y,z) = \sqrt{x^2 + y^2}, \space B = \big\{(x,y,z)\, | \,1 \leq x^2 + y^2 \leq 9, \space y \leq 0, \space 0 \leq z \leq 1\big\}$$

7. a. Dejar$$B$$ ser una concha cilíndrica con radio interior radio$$a$$ exterior$$b$$, y altura$$c$$ donde$$0 < a < b$$ y$$c>0$$. Supongamos que una función$$F$$ definida en$$B$$ puede expresarse en coordenadas cilíndricas como$$F(x,y,z) = f(r) + h(z)$$, dónde$$f$$ y$$h$$ son funciones diferenciables. Si$$\displaystyle \int_a^b \bar{f} (r) \,dr = 0$$ y$$\bar{h}(0) = 0$$, donde$$\bar{f}$$ y$$\bar{h}$$ son antiderivados de$$f$$ y$$h$$, respectivamente, muestran que$$\displaystyle \iiint_B F(x,y,z) \,dV = 2\pi c (b\bar{f} (b) - a \bar{f}(a)) + \pi(b^2 - a^2) \bar{h} (c).$$

b. Utilice el resultado anterior para mostrar$$\displaystyle \iiint_B \left(z + \sin \sqrt{x^2 + y^2}\right) \,dx \space dy \space dz = 6 \pi^2 ( \pi - 2),$$ dónde$$B$$ está una carcasa cilíndrica con radio interior$$2\pi$$, radio$$\pi$$ exterior y altura$$2$$.

8. a. Dejar$$B$$ ser una concha cilíndrica con radio interior radio$$a$$ exterior$$b$$ y altura$$c$$ donde$$0 < a < b$$ y$$c > 0$$. Supongamos que una función$$F$$ definida en$$B$$ puede expresarse en coordenadas cilíndricas como$$F(x,y,z) = f(r) g(\theta) f(z)$$, dónde$$f, \space g,$$ y$$h$$ son funciones diferenciables. Si$$\displaystyle\int_a^b \tilde{f} (r) \, dr = 0,$$ donde$$\tilde{f}$$ es un antiderivado de$$f$$, mostrar que$$\displaystyle\iiint_B F (x,y,z)\,dV = [b\tilde{f}(b) - a\tilde{f}(a)] [\tilde{g}(2\pi) - \tilde{g}(0)] [\tilde{h}(c) - \tilde{h}(0)],$$ donde$$\tilde{g}$$ y$$\tilde{h}$$ son antiderivados de$$g$$ y$$h$$, respectivamente.

b. Utilice el resultado anterior para mostrar$$\displaystyle\iiint_B z \sin \sqrt{x^2 + y^2} \,dx \space dy \space dz = - 12 \pi^2,$$ dónde$$B$$ está una carcasa cilíndrica con radio interior$$2\pi$$, radio$$\pi$$ exterior y altura$$2$$.

En los ejercicios 9 - 12, los límites del sólido$$E$$ se dan en coordenadas cilíndricas.

a. Expresar la región$$E$$ en coordenadas cilíndricas.

b. Convertir las coordenadas integrales$$\displaystyle \iiint_E f(x,y,z) \,dV$$ a cilíndricas.

9. $$E$$está delimitado por el cilindro circular derecho$$r = 4 \sin \theta$$, el$$r\theta$$ plano y la esfera$$r^2 + z^2 = 16$$.

Contestar

a.$$E = \big\{(r,\theta,z)\, | \,0 \leq \theta \leq \pi, \space 0 \leq r \leq 4 \sin \theta, \space 0 \leq z \leq \sqrt{16 - r^2}\big\}$$

b.$$\displaystyle\int_0^{\pi} \int_0^{4 \sin \theta} \int_0^{\sqrt{16-r^2}} f(r,\theta, z) r \, dz \space dr \space d\theta$$

10. $$E$$está delimitado por el cilindro circular derecho$$r = \cos \theta$$, el$$r\theta$$ plano y la esfera$$r^2 + z^2 = 9$$.

11. $$E$$se encuentra en el primer octante y está delimitado por el paraboloide circular$$z = 9 - 3r^2$$, el cilindro$$r = \sqrt{3}$$ y el plano$$r(\cos \theta + \sin \theta) = 20 - z$$.

Contestar

a.$$E = \big\{(r,\theta,z) \, | \, 0 \leq \theta \leq \frac{\pi}{2}, \space 0 \leq r \leq \sqrt{3}, \space 9 - r^2 \leq z \leq 10 - r(\cos \theta + \sin \theta)\big\}$$

b.$$\displaystyle\int_0^{\pi/2} \int_0^{\sqrt{3}} \int_{9-r^2}^{10-r(\cos \theta + \sin \theta)} f(r,\theta,z) r \space dz \space dr \space d\theta$$

12. $$E$$se encuentra en el primer octante fuera del paraboloide circular$$z = 10 - 2r^2$$ y dentro del cilindro$$r = \sqrt{5}$$ y está delimitado también por los planos$$z = 20$$ y$$\theta = \frac{\pi}{4}$$.

En los ejercicios 13 - 16,$$E$$ se dan la función$$f$$ y región.

a. Expresar la región$$E$$ y la función$$f$$ en coordenadas cilíndricas.

b. Convertir la integral$$\displaystyle \iiint_B f(x,y,z) \,dV$$ en coordenadas cilíndricas y evaluarla.

13. $$f(x,y,z) = x^2 + y^2$$,$$E = \big\{(x,y,z)\, | \,0 \leq x^2 + y^2 \leq 9, \space x \geq 0, \space y \geq 0, \space 0 \leq z \leq x + 3\big\}$$

Contestar

a.$$E = \big\{(r,\theta,z)\, | \,0 \leq r \leq 3, \space 0 \leq \theta \leq \frac{\pi}{2}, \space 0 \leq z \leq r \space \cos \theta + 3\big\},$$
$$f(r,\theta,z) = \frac{1}{r \space \cos \theta + 3}$$

b.$$\displaystyle \int_0^3 \int_0^{\pi/2} \int_0^{r \space \cos \theta+3} \frac{r}{r \space \cos \theta + 3} \, dz \space d\theta \space dr = \frac{9\pi}{4}$$

14. $$f(x,y,z) = x^2 + y^2, \space E = \big\{(x,y,z) |0 \leq x^2 + y^2 \leq 4, \space y \geq 0, \space 0 \leq z \leq 3 - x \big\}$$

15. $$f(x,y,z) = x, \space E = \big\{(x,y,z)\, | \,1 \leq y^2 + z^2 \leq 9, \space 0 \leq x \leq 1 - y^2 - z^2\big\}$$

Contestar

a.$$y = r \space \cos \theta, \space z = r \space \sin \theta, \space x = z,\space E = \big\{(r,\theta,z)\, | \,1 \leq r \leq 3, \space 0 \leq \theta \leq 2\pi, \space 0 \leq z \leq 1 - r^2\big\}, \space f(r,\theta,z) = z$$;

b.$$\displaystyle \int_1^3 \int_0^{2\pi} \int_0^{1-r^2} z r \space dz \space d\theta \space dr = \frac{356 \pi}{3}$$

16. $$f(x,y,z) = y, \space E = \big\{(x,y,z)\, | \,1 \leq x^2 + z^2 \leq 9, \space 0 \leq y \leq 1 - x^2 - z^2 \big\}$$

En los ejercicios 17 - 24, encuentra el volumen del sólido$$E$$ cuyos límites se dan en coordenadas rectangulares.

17. $$E$$está por encima del$$xy$$ plano, dentro del cilindro$$x^2 + y^2 = 1$$ y por debajo del plano$$z = 1$$.

Contestar
$$\pi$$

18. $$E$$está debajo del plano$$z = 1$$ y dentro del paraboloide$$z = x^2 + y^2$$.

19. $$E$$está delimitado por el cono circular$$z = \sqrt{x^2 + y^2}$$ y$$z = 1$$.

Contestar
$$\frac{\pi}{3}$$

20. $$E$$se encuentra por encima del$$xy$$ plano, abajo$$z = 1$$, fuera del hiperboloide$$x^2 + y^2 - z^2 = 1$$ de una hoja y dentro del cilindro$$x^2 + y^2 = 2$$.

21. $$E$$se encuentra dentro del cilindro$$x^2 + y^2 = 1$$ y entre los paraboloides circulares$$z = 1 - x^2 - y^2$$ y$$z = x^2 + y^2$$.

Contestar
$$\pi$$

22. $$E$$se encuentra dentro de la esfera$$x^2 + y^2 + z^2 = 1$$, por encima del$$xy$$ plano y dentro del cono circular$$z = \sqrt{x^2 + y^2}$$.

23. $$E$$se encuentra fuera del cono circular$$x^2 + y^2 = (z - 1)^2$$ y entre los planos$$z = 0$$ y$$z = 2$$.

Contestar
$$\frac{4\pi}{3}$$

24. $$E$$se encuentra fuera del cono circular$$z = 1 - \sqrt{x^2 + y^2}$$, por encima del$$xy$$ plano -plano, por debajo del paraboloide circular, y entre los planos$$z = 0$$ y$$z = 2$$.

25. [T] Utilice un sistema de álgebra computacional (CAS) para graficar el sólido cuyo volumen viene dado por la integral iterada en coordenadas cilíndricas$$\displaystyle \int_{-\pi/2}^{\pi/2} \int_0^1 \int_{r^2}^r r \, dz \, dr \, d\theta.$$ Encuentra el volumen$$V$$ del sólido. Redondea tu respuesta a cuatro decimales.

Contestar

$$V = \frac{pi}{12} \approx 0.2618$$

26. [T] Utilice un CAS para graficar el sólido cuyo volumen viene dado por la integral iterada en coordenadas cilíndricas$$\displaystyle \int_0^{\pi/2} \int_0^1 \int_{r^4}^r r \, dz \, dr \, d\theta.$$ Find the volume $$E$$ of the solid. Round your answer to four decimal places.

27. Convert the integral $$\displaystyle\int_0^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \int_{x^2+y^2}^{\sqrt{x^2+y^2}} xz \space dz \space dx \space dy$$ into an integral in cylindrical coordinates.

$$\displaystyle\int_0^1 \int_0^{\pi} \int_{r^2}^r zr^2 \space \cos \theta \, dz \space d\theta \space dr$$

28. Convert the integral $$\displaystyle \int_0^2 \int_0^y \int_0^1 (xy + z) \, dz \space dx \space dy$$ into an integral in cylindrical coordinates.

In exercises 29 - 32, evaluate the triple integral $$\displaystyle \iiint_B f(x,y,z) \,dV$$ over the solid $$B$$.

29. $$f(x,y,z) = 1, \space B = \big\{(x,y,z)\, | \,x^2 + y^2 + z^2 \leq 90, \space z \geq 0\big\}$$

[Ocultar solución]

Contestar
$$180 \pi \sqrt{10}$$

30. $$f(x,y,z) = 1 - \sqrt{x^2 + y^2 + z^2}, \space B = \big\{(x,y,z)\, | \,x^2 + y^2 + z^2 \leq 9, \space y \geq 0, \space z \geq 0\big\}$$

31. $$f(x,y,z) = \sqrt{x^2 + y^2}, \space B$$ is bounded above by the half-sphere $$x^2 + y^2 + z^2 = 9$$ with $$z \geq 0$$ and below by the cone $$2z^2 = x^2 + y^2$$.

$$\frac{81\pi(\pi - 2)}{16}$$

32. $$f(x,y,z) = \sqrt{x^2 + y^2}, \space B$$ is bounded above by the half-sphere $$x^2 + y^2 + z^2 = 16$$ with $$z \geq 0$$ and below by the cone $$2z^2 = x^2 + y^2$$.

33. Show that if $$F ( \rho,\theta,\varphi) = f(\rho)g(\theta)h(\varphi)$$ is a continuous function on the spherical box $$B = \big\{(\rho,\theta,\varphi)\, | \,a \leq \rho \leq b, \space \alpha \leq \theta \leq \beta, \space \gamma \leq \varphi \leq \psi\big\}$$, then $$\displaystyle\iiint_B F \space dV = \left(\int_a^b \rho^2 f(\rho) \space dr \right) \left( \int_{\alpha}^{\beta} g (\theta) \space d\theta \right)\left( \int_{\gamma}^{\psi} h (\varphi) \space \sin \varphi \space d\varphi \right).$$

34. A function $$F$$ is said to have spherical symmetry if it depends on the distance to the origin only, that is, it can be expressed in spherical coordinates as $$F(x,y,z) = f(\rho)$$, where $$\rho = \sqrt{x^2 + y^2 + z^2}$$. Show that $$\displaystyle\iiint_B F(x,y,z) \,dV = 2\pi \int_a^b \rho^2 f(\rho) \,d\rho,$$ where $$B$$ is the region between the upper concentric hemispheres of radii $$a$$ and $$b$$ centered at the origin, with $$0 < a < b$$ and $$F$$ a spherical function defined on $$B$$.

Use the previous result to show that $$\displaystyle\iiint_B (x^2 + y^2 + z^2) \sqrt{x^2 + y^2 + z^2} dV = 21 \pi,$$ where $$B = \big\{(x,y,z)\, | \,1 \leq x^2 + y^2 + z^2 \leq 2, \space z \geq 0\big\}$$.

35. Let $$B$$ be the region between the upper concentric hemispheres of radii a and b centered at the origin and situated in the first octant, where $$0 < a < b$$. Consider F a function defined on B whose form in spherical coordinates $$(\rho,\theta,\varphi)$$ is $$F(x,y,z) = f(\rho)\cos \varphi$$. Show that if $$g(a) = g(b) = 0$$ and $$\displaystyle\int_a^b h (\rho) \, d\rho = 0,$$ then $$\displaystyle\iiint_B F(x,y,z)\,dV = \frac{\pi^2}{4} [ah(a) - bh(b)],$$ where $$g$$ is an antiderivative of $$f$$ and $$h$$ is an antiderivative of $$g$$.

Use the previous result to show that $$\displaystyle \iiint_B = \frac{z \cos \sqrt{x^2 + y^2 + z^2}}{\sqrt{x^2 + y^2 + z^2}} \, dV = \frac{3\pi^2}{2},$$ where $$B$$ is the region between the upper concentric hemispheres of radii $$\pi$$ and $$2\pi$$ centered at the origin and situated in the first octant.

In exercises 36 - 39, the function $$f$$ and region $$E$$ are given.

a. Express the region $$E$$ and function $$f$$ in cylindrical coordinates.

b. Convert the integral $$\displaystyle \iiint_B f(x,y,z)\, dV$$ into cylindrical coordinates and evaluate it.

36. $$f(x,y,z) = z; \space E = \big\{(x,y,z)\, | \,0 \leq x^2 + y^2 + z^2 \leq 1, \space z \geq 0\big\}$$

37. $$f(x,y,z) = x + y; \space E = \big\{(x,y,z)\, | \,1 \leq x^2 + y^2 + z^2 \leq 2, \space z \geq 0, \space y \geq 0\big\}$$

a. $$f(\rho,\theta, \varphi) = \rho \space \sin \varphi \space (\cos \theta + \sin \theta), \space E = \big\{(\rho,\theta,\varphi)\, | \,1 \leq \rho \leq 2, \space 0 \leq \theta \leq \pi, \space 0 \leq \varphi \leq \frac{\pi}{2}\big\}$$;

b. $$\displaystyle \int_0^{\pi} \int_0^{\pi/2} \int_1^2 \rho^3 \cos \varphi \space \sin \varphi \space d\rho \space d\varphi \space d\theta = \frac{15\pi}{8}$$

38. $$f(x,y,z) = 2xy; \space E = \big\{(x,y,z)\, | \,\sqrt{x^2 + y^2} \leq z \leq \sqrt{1 - x^2 - y^2}, \space x \geq 0, \space y \geq 0\big\}$$

39. $$f(x,y,z) = z; \space E = \big\{(x,y,z)\, | \,x^2 + y^2 + z^2 - 2x \leq 0, \space \sqrt{x^2 + y^2} \leq z\big\}$$

a. $$f(\rho,\theta,\varphi) = \rho \space \cos \varphi; \space E = \big\{(\rho,\theta,\varphi)\, | \,0 \leq \rho \leq 2 \space \cos \varphi, \space 0 \leq \theta \leq \frac{\pi}{2}, \space 0 \leq \varphi \leq \frac{\pi}{4}\big\}$$;

b. $$\displaystyle\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{2 \space \cos \varphi} \rho^3 \sin \varphi \space \cos \varphi \space d\rho \space d\varphi \space d\theta = \frac{7\pi}{24}$$

In exercises 40 - 41, find the volume of the solid $$E$$ whose boundaries are given in rectangular coordinates.

40. $$E = \big\{ (x,y,z)\, | \,\sqrt{x^2 + y^2} \leq z \leq \sqrt{16 - x^2 - y^2}, \space x \geq 0, \space y \geq 0\big\}$$

41. $$E = \big\{ (x,y,z)\, | \,x^2 + y^2 + z^2 - 2z \leq 0, \space \sqrt{x^2 + y^2} \leq z\big\}$$

$$\frac{\pi}{4}$$

42. Use spherical coordinates to find the volume of the solid situated outside the sphere $$\rho = 1$$ and inside the sphere $$\rho = \cos \varphi$$, with $$\varphi \in [0,\frac{\pi}{2}]$$.

43. Use spherical coordinates to find the volume of the ball $$\rho \leq 3$$ that is situated between the cones $$\varphi = \frac{\pi}{4}$$ and $$\varphi = \frac{\pi}{3}$$.

$$9\pi (\sqrt{2} - 1)$$

44. Convert the integral $$\displaystyle \int_{-4}^4 \int_{-\sqrt{16-y^2}}^{\sqrt{16-y^2}} \int_{-\sqrt{16-x^2-y^2}}^{\sqrt{16-x^2-y^2}} (x^2 + y^2 + z^2) \, dz \, dx \, dy$$ into an integral in spherical coordinates.

45. Convert the integral $$\displaystyle \int_0^4 \int_0^{\sqrt{16-x^2}} \int_{-\sqrt{16-x^2-y^2}}^{\sqrt{16-x^2-y^2}} (x^2 + y^2 + z^2)^2 \, dz \space dy \space dx$$ into an integral in spherical coordinates.

$$\displaystyle\int_0^{\pi/2} \int_0^{\pi/2} \int_0^4 \rho^6 \sin \varphi \, d\rho \, d\phi \, d\theta$$

47. [T] Use a CAS to graph the solid whose volume is given by the iterated integral in spherical coordinates $$\displaystyle \int_{\pi/2}^{\pi} \int_{5\pi}^{\pi/6} \int_0^2 \rho^2 \sin \varphi \space d\rho \space d\varphi \space d\theta.$$ Find the volume $$V$$ of the solid. Round your answer to three decimal places.

$$V = \frac{4\pi\sqrt{3}}{3} \approx 7.255$$

48. [T] Utilice un CAS para graficar el sólido cuyo volumen viene dado por la integral iterada en coordenadas esféricas como$$\displaystyle \int_0^{2\pi} \int_{3\pi/4}^{\pi/4} \int_0^1 \rho^2 \sin \varphi \space d\rho \space d\varphi \space d\theta.$$ Encontrar el volumen$$V$$ del sólido. Redondea tu respuesta a tres decimales.

49. [T] Utilice un CAS para evaluar la integral$$\displaystyle \iiint_E (x^2 + y^2) \, dV$$ donde$$E$$ se encuentra por encima del paraboloide$$z = x^2 + y^2$$ y por debajo del plano$$z = 3y$$.

Contestar
$$\frac{343\pi}{32}$$

50. [T]

a. Evaluar la integral$$\displaystyle \iiint_E e^{\sqrt{x^2+y^2+z^2}}\, dV,$$ donde$$E$$ está delimitada por esferas$$4x^2 + 4y^2 + 4z^2 = 1$$ y$$x^2 + y^2 + z^2 = 1$$.

b. Utilice un CAS para encontrar una aproximación de la integral anterior. Redondea tu respuesta a dos decimales.

51. Expresar el volumen del sólido dentro de la esfera$$x^2 + y^2 + z^2 = 16$$ y fuera del cilindro$$x^2 + y^2 = 4$$ como integrales triples en coordenadas cilíndricas y coordenadas esféricas, respectivamente.

Contestar
$$\displaystyle \int_0^{2\pi}\int_2^4\int_{−\sqrt{16−r^2}}^{\sqrt{16−r^2}}r\,dz\,dr\,dθ$$y$$\displaystyle \int_{\pi/6}^{5\pi/6}\int_0^{2\pi}\int_{2\csc \phi}^{4}\rho^2\sin \rho \, d\rho \, d\theta \, d\phi$$

52. Expresar el volumen del sólido dentro de la esfera$$x^2 + y^2 + z^2 = 16$$ y fuera del cilindro$$x^2 + y^2 = 4$$ que se ubica en el primer octante como integrales triples en coordenadas cilíndricas y coordenadas esféricas, respectivamente.

53. La potencia emitida por una antena tiene una densidad de potencia por unidad de volumen dada en coordenadas esféricas por$$p(\rho,\theta,\varphi) = \frac{P_0}{\rho^2} \cos^2 \theta \space \sin^4 \varphi$$, donde$$P_0$$ es una constante con unidades en vatios. La potencia total dentro de una esfera$$B$$ de$$r$$ metros de radio se define como$$\displaystyle P = \iiint_B p(\rho,\theta,\varphi) \, dV.$$ Encontrar la potencia total$$P$$.

Contestar
$$P = \frac{32P_0 \pi}{3}$$vatios

54. Utilice el ejercicio anterior para encontrar la potencia total dentro de una esfera$$B$$ de radio 5 metros cuando la densidad de potencia por unidad de volumen viene dada por$$p(\rho, \theta,\varphi) = \frac{30}{\rho^2} \cos^2 \theta \sin^4 \varphi$$.

55. Una nube de carga contenida en una esfera$$B$$ de$$r$$ centímetros de radio centrada en el origen tiene su densidad de carga dada por$$q(x,y,z) = k\sqrt{x^2 + y^2 + z^2}\frac{\mu C}{cm^3}$$, donde$$k > 0$$. El cargo total contenido en$$B$$ es dado por$$\displaystyle Q = \iiint_B q(x,y,z) \, dV.$$ Encuentra el cargo total$$Q$$.

Contestar
$$Q = kr^4 \pi \mu C$$

56. Utilice el ejercicio anterior para encontrar la nube de carga total contenida en la esfera unitaria si la densidad de carga es$$q(x,y,z) = 20 \sqrt{x^2 + y^2 + z^2} \frac{\mu C}{cm^3}$$.