15: Integración múltiple
- Page ID
- 116242
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)En este capítulo ampliamos el concepto de una integral definida de una sola variable a integrales dobles y triples de funciones de dos y tres variables, respectivamente. Examinamos aplicaciones que implican integración para calcular volúmenes, masas y centroides de regiones más generales. También veremos cómo el uso de otros sistemas de coordenadas (como las coordenadas polares, cilíndricas y esféricas) facilita el cálculo de múltiples integrales sobre algunos tipos de regiones y funciones. En el capítulo anterior, se discutió el cálculo diferencial con múltiples variables independientes. Ahora examinamos el cálculo integral en múltiples dimensiones. Así como una derivada parcial nos permite diferenciar una función con respecto a una variable mientras mantiene constantes las otras variables, veremos que una integral iterada nos permite integrar una función con respecto a una variable mientras mantiene constantes las otras variables.
- 15.0: Preludio a la integración múltiple
- En el capítulo anterior, se discutió el cálculo diferencial con múltiples variables independientes. Ahora examinamos el cálculo integral en múltiples dimensiones. Así como una derivada parcial nos permite diferenciar una función con respecto a una variable mientras mantiene constantes las otras variables, veremos que una integral iterada nos permite integrar una función con respecto a una variable mientras mantiene constantes las otras variables.
- 15.1: Integrales dobles sobre regiones rectangulares
- En esta sección investigamos las integrales dobles y mostramos cómo podemos utilizarlas para encontrar el volumen de un sólido sobre una región rectangular en el plano xixi. Muchas de las propiedades de las integrales dobles son similares a las que ya hemos discutido para integrales simples.
- 15.2: Integrales dobles sobre regiones generales
- En esta sección consideramos dobles integrales de funciones definidas sobre una región delimitada general D en el plano. La mayoría de los resultados anteriores también se mantienen en esta situación, pero algunas técnicas necesitan ser extendidas para cubrir este caso más general.
- 15.3: Integrales dobles en coordenadas polares
- Las integrales dobles son a veces mucho más fáciles de evaluar si cambiamos las coordenadas rectangulares a coordenadas polares. Sin embargo, antes de describir cómo hacer este cambio, necesitamos establecer el concepto de una doble integral en una región rectangular polar.
- 15.4: Integrales triples
- En Integrales dobles sobre regiones rectangulares, se discutió la doble integral de una función f (x, y) de dos variables sobre una región rectangular en el plano. En esta sección definimos la triple integral de una función f (x, y, z) de tres variables sobre una caja sólida rectangular en el espacio, R³. Posteriormente en esta sección extendemos la definición a regiones más generales en R³.
- 15.5: Integrales triples en coordenadas cilíndricas y esféricas
- En esta sección convertimos integrales triples en coordenadas rectangulares en una triple integral en coordenadas cilíndricas o esféricas.
- 15.6: Cálculo de Centros de Masa y Momentos de Inercia
- En esta sección desarrollamos técnicas computacionales para encontrar el centro de masa y momentos de inercia de varios tipos de objetos físicos, utilizando dobles integrales para una lámina (placa plana) y triples integrales para un objeto tridimensional con densidad variable. La densidad suele considerarse como un número constante cuando la lámina o el objeto es homogéneo; es decir, el objeto tiene densidad uniforme.
- 15.7: Cambio de Variables en Integrales Múltiples
- Al resolver problemas de integración, hacemos las sustituciones adecuadas para obtener una integral que se vuelve mucho más simple que la integral original. También usamos esta idea cuando transformamos integrales dobles en coordenadas rectangulares en coordenadas polares y transformamos integrales triples en coordenadas rectangulares en coordenadas cilíndricas o esféricas para hacer los cálculos más simples.
Miniatura: Doble integral como volumen bajo una superficie\(z = 10 − x^2 − y^2/8\). La región rectangular en la parte inferior del cuerpo es el dominio de integración, mientras que la superficie es la gráfica de la función de dos variables a integrar. (Dominio público; Oleg Alexandrov).