Loading [MathJax]/extensions/mml2jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 11 resultados
    • https://espanol.libretexts.org/Matematicas/Precalculo_y_Trigonometria/Prec%C3%A1lculo_(OpenStax)/08%3A_Otras_aplicaciones_de_la_trigonometr%C3%ADa/8.05%3A_Forma_polar_de_n%C3%BAmeros_complejos
      En esta sección, nos centraremos en la mecánica de trabajar con números complejos: traducción de números complejos de forma polar a forma rectangular y viceversa, interpretación de números complejos e...En esta sección, nos centraremos en la mecánica de trabajar con números complejos: traducción de números complejos de forma polar a forma rectangular y viceversa, interpretación de números complejos en el esquema de aplicaciones y aplicación del Teorema de De Moivre.
    • https://espanol.libretexts.org/Matematicas/Precalculo_y_Trigonometria/Prec%C3%A1lculo_(OpenStax)/03%3A_Funciones_polinomiales_y_racionales/3.R%3A_Funciones_polin%C3%B3micas_y_racionales_(Revisi%C3%B3n)
      Después de todo, a este punto hemos descrito la raíz cuadrada de un número negativo como indefinida. Afortunadamente, existe otro sistema de números que brinda soluciones a problemas como estos. En es...Después de todo, a este punto hemos descrito la raíz cuadrada de un número negativo como indefinida. Afortunadamente, existe otro sistema de números que brinda soluciones a problemas como estos. En esta sección, exploraremos este sistema de números y cómo trabajar dentro de él.
    • https://espanol.libretexts.org/Ingenieria/Senales_y_Sistemas_(Baraniuk_et_al.)/15%3A_Ap%C3%A9ndice_B-_Resumen_de_Espacios_Hilbert/15.01%3A_Campos_y_n%C3%BAmeros_complejos
      Una introducción a campos y números complejos.
    • https://espanol.libretexts.org/Matematicas/Geometria/Geometr%C3%ADa_con_Introducci%C3%B3n_a_la_Topolog%C3%ADa_C%C3%B3smica_(Hitchman)/02%3A_El_Plano_Complejo/2.01%3A_Nociones_b%C3%A1sicas
      El conjunto de números complejos se obtiene algebraicamente al unir el número i al conjunto R de números reales, donde i se define por la propiedad que i^2=−1. Tomaremos un enfoque geométrico y defini...El conjunto de números complejos se obtiene algebraicamente al unir el número i al conjunto R de números reales, donde i se define por la propiedad que i^2=−1. Tomaremos un enfoque geométrico y definiremos un número complejo para ser un par ordenado (x, y) de números reales.
    • https://espanol.libretexts.org/Matematicas/Precalculo_y_Trigonometria/Libro%3A_Prec%C3%A1lculo_(Sstitz-Zeager)/03%3A_Funciones_polinomiales/3.04%3A_Los_ceros_complejos_y_el_teorema_fundamental_del_%C3%A1lgebra
      Anteriormente, estábamos enfocados en encontrar los ceros reales de una función polinómica. En esta sección, ampliamos nuestros horizontes y buscamos también los ceros no reales. El requiere introduci...Anteriormente, estábamos enfocados en encontrar los ceros reales de una función polinómica. En esta sección, ampliamos nuestros horizontes y buscamos también los ceros no reales. El requiere introducir la unidad imaginaria, i, que si bien no es un número real, juega bien con los números reales, y actúa muy parecido a cualquier otra expresión radical
    • https://espanol.libretexts.org/Matematicas/Algebra/Mapa%3A_Algebra_Universitaria_(OpenStax)/02%3A_Ecuaciones_y_Desigualdades/2.05%3A_N%C3%BAmeros_Complejos
      La raíz cuadrada de cualquier número negativo se puede escribir como un múltiplo de i. Para trazar un número complejo, utilizamos dos líneas numéricas, cruzadas para formar el plano complejo. El eje h...La raíz cuadrada de cualquier número negativo se puede escribir como un múltiplo de i. Para trazar un número complejo, utilizamos dos líneas numéricas, cruzadas para formar el plano complejo. El eje horizontal es el eje real, y el eje vertical es el eje imaginario. Los números complejos se pueden sumar y restar combinando las partes reales y combinando las partes imaginarias. Los números complejos se pueden multiplicar y dividir.
    • https://espanol.libretexts.org/Matematicas/Algebra/Libro%3A_Algebra_y_Trigonometria_(OpenStax)/02%3A_Ecuaciones_y_Desigualdades/2.04%3A_N%C3%BAmeros_Complejos
      La raíz cuadrada de cualquier número negativo se puede escribir como un múltiplo de i. Para trazar un número complejo, utilizamos dos líneas numéricas, cruzadas para formar el plano complejo. El eje h...La raíz cuadrada de cualquier número negativo se puede escribir como un múltiplo de i. Para trazar un número complejo, utilizamos dos líneas numéricas, cruzadas para formar el plano complejo. El eje horizontal es el eje real, y el eje vertical es el eje imaginario. Los números complejos se pueden sumar y restar combinando las partes reales y combinando las partes imaginarias. Los números complejos se pueden multiplicar y dividir.
    • https://espanol.libretexts.org/Matematicas/Precalculo_y_Trigonometria/Prec%C3%A1lculo_(OpenStax)/03%3A_Funciones_polinomiales_y_racionales/3.01%3A_N%C3%BAmeros_complejos
      Después de todo, a este punto hemos descrito la raíz cuadrada de un número negativo como indefinida. Afortunadamente, existe otro sistema de números que brinda soluciones a problemas como estos. En es...Después de todo, a este punto hemos descrito la raíz cuadrada de un número negativo como indefinida. Afortunadamente, existe otro sistema de números que brinda soluciones a problemas como estos. En esta sección, exploraremos este sistema de números y cómo trabajar dentro de él.
    • https://espanol.libretexts.org/Matematicas/Precalculo_y_Trigonometria/Prec%C3%A1lculo_(OpenStax)/03%3A_Funciones_polinomiales_y_racionales/3.E%3A_Funciones_polin%C3%B3micas_y_racionales_(Ejercicios)
      Después de todo, a este punto hemos descrito la raíz cuadrada de un número negativo como indefinida. Afortunadamente, existe otro sistema de números que brinda soluciones a problemas como estos. En es...Después de todo, a este punto hemos descrito la raíz cuadrada de un número negativo como indefinida. Afortunadamente, existe otro sistema de números que brinda soluciones a problemas como estos. En esta sección, exploraremos este sistema de números y cómo trabajar dentro de él.
    • https://espanol.libretexts.org/Educacion_Basica/Calculo/03%3A_L%C3%ADmites_-_Continuidad/3.04%3A_Encontrar_soluciones_imaginarias
      El teorema de pares conjugados establece que si f (z) es un polinomio de grado n, con n≠ 0 y con coeficientes reales, y si f (z0) =0, donde z0=a+bi, entonces f (z*0) =0. El teorema fundamental del álg...El teorema de pares conjugados establece que si f (z) es un polinomio de grado n, con n≠ 0 y con coeficientes reales, y si f (z0) =0, donde z0=a+bi, entonces f (z*0) =0. El teorema fundamental del álgebra establece que si f (x) es un polinomio de grado n≥1, entonces f (x) tiene al menos un cero en el dominio numérico complejo. Las raíces de una función son los valores de x que hacen y igual a cero. Los ceros de una función f (x) son los valores de x que hacen que f (x) sea igual a cero.
    • https://espanol.libretexts.org/Matematicas/Algebra/Libro%3A_Algebra_y_Trigonometria_(OpenStax)/10%3A_Otras_aplicaciones_de_la_trigonometr%C3%ADa/10.05%3A_Forma_polar_de_n%C3%BAmeros_complejos
      En esta sección, nos centraremos en la mecánica de trabajar con números complejos: traducción de números complejos de forma polar a forma rectangular y viceversa, interpretación de números complejos e...En esta sección, nos centraremos en la mecánica de trabajar con números complejos: traducción de números complejos de forma polar a forma rectangular y viceversa, interpretación de números complejos en el esquema de aplicaciones y aplicación del Teorema de De Moivre.

    Support Center

    How can we help?