Saltar al contenido principal
LibreTexts Español

6.7E: Ejercicios para la Sección 6.7

  • Page ID
    116177
    • Edwin “Jed” Herman & Gilbert Strang
    • OpenStax

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    En los ejercicios 1 - 3, encuentra la derivada\(\dfrac{dy}{dx}\).

    1)\(y=\ln(2x)\)

    Contestar
    \(\dfrac{dy}{dx} = \dfrac{1}{x}\)

    2)\(y=\ln(2x+1)\)

    3)\(y=\dfrac{1}{\ln x}\)

    Contestar
    \(\dfrac{dy}{dx} = −\dfrac{1}{x(\ln x)^2}\)

    En los ejercicios 4 - 5, encuentra la integral indefinida.

    4)\(\displaystyle ∫\frac{dt}{3t}\)

    5)\(\displaystyle ∫\frac{dx}{1+x}\)

    Contestar
    \(\displaystyle ∫\frac{dx}{1+x} = \ln|x+1|+C\)

    En los ejercicios 6 - 15, encuentra la derivada\(\dfrac{dy}{dx}.\) (Puedes usar una calculadora para trazar la función y la derivada para confirmar que es correcta).

    6) [T]\(y=\dfrac{\ln x}{x}\)

    7) [T]\(y=x\ln x\)

    Contestar
    \(\dfrac{dy}{dx} = \ln(x)+1\)

    8) [T]\(y=\log_{10}x\)

    9) [T]\(y=\ln(\sin x)\)

    Contestar
    \(\dfrac{dy}{dx} = \cot x\)

    10) [T]\(y=\ln(\ln x)\)

    11) [T]\(y=7\ln(4x)\)

    Contestar
    \(\dfrac{dy}{dx} = \frac{7}{x}\)

    12) [T]\(y=\ln\big((4x)^7\big)\)

    13) [T]\(y=\ln(\tan x)\)

    Contestar
    \(\dfrac{dy}{dx} = \csc x\sec x\)

    14) [T]\(y=\ln(\tan 3x)\)

    15) [T]\(y=\ln(\cos^2x)\)

    Contestar
    \(\dfrac{dy}{dx} = −2\tan x\)

    En los ejercicios 16 - 25, encuentra la integral definida o indefinida.

    16)\(\displaystyle ∫^1_0\frac{dx}{3+x}\)

    17)\(\displaystyle ∫^1_0\frac{dt}{3+2t}\)

    Contestar
    \(\displaystyle ∫^1_0\frac{dt}{3+2t} = \tfrac{1}{2}\ln\left(\tfrac{5}{3}\right)\)

    18)\(\displaystyle ∫^2_0\frac{x}{x^2+1}\, dx\)

    19)\(\displaystyle ∫^2_0\frac{x^3}{x^2+1}\,dx\)

    Contestar
    \(\displaystyle ∫^2_0\frac{x^3}{x^2+1}\,dx = 2−\tfrac{1}{2}\ln(5)\)

    20)\(\displaystyle ∫^e_2\frac{dx}{x\ln x}\)

    21)\(\displaystyle ∫^e_2\frac{dx}{(x\ln x)^2}\)

    Contestar
    \(\displaystyle ∫^e_2\frac{dx}{(x\ln x)^2} = \frac{1}{\ln(2)}−1\)

    22)\(\displaystyle ∫\frac{\cos x}{\sin x}\, dx\)

    23)\(\displaystyle ∫^{π/4}_0\tan x\,dx\)

    Contestar
    \(\displaystyle ∫^{π/4}_0\tan x\,dx = \tfrac{1}{2}\ln(2)\)

    24)\(\displaystyle ∫\cot(3x)\,dx\)

    25)\(\displaystyle ∫\frac{(\ln x)^2}{x}\, dx\)

    Contestar
    \(\displaystyle ∫\frac{(\ln x)^2}{x}\, dx = \tfrac{1}{3}(\ln x)^3\)

    En los ejercicios 26 - 35, computar\(\dfrac{dy}{dx}\) diferenciando\(\ln y\).

    26)\(y=\sqrt{x^2+1}\)

    27)\(y=\sqrt{x^2+1}\sqrt{x^2−1}\)

    Contestar
    \(\dfrac{dy}{dx} = \dfrac{2x^3}{\sqrt{x^2+1}\sqrt{x^2−1}}\)

    28)\(y=e^{\sin x}\)

    29)\(y=x^{−1/x}\)

    Contestar
    \(\dfrac{dy}{dx} = x^{−2−(1/x)}(\ln x−1)\)

    30)\(y=e^{ex}\)

    31)\(y=x^e\)

    Contestar
    \(\dfrac{dy}{dx} = ex^{e−1}\)

    32)\(y=x^{(ex)}\)

    33)\(y=\sqrt{x}\sqrt[3]{x}\sqrt[6]{x}\)

    Contestar
    \(\dfrac{dy}{dx} = 1\)

    34)\(y=x^{−1/\ln x}\)

    35)\(y=e^{−\ln x}\)

    Contestar
    \(\dfrac{dy}{dx} = −\dfrac{1}{x^2}\)

    En los ejercicios 36 - 40, evaluar por cualquier método.

    36)\(\displaystyle ∫^{10}_5\dfrac{dt}{t}−∫^{10x}_{5x}\dfrac{dt}{t}\)

    37)\(\displaystyle ∫^{e^π}_1\dfrac{dx}{x}+∫^{−1}_{−2}\dfrac{dx}{x}\)

    Contestar
    \(π−\ln(2)\)

    38)\(\dfrac{d}{dx}\left[\displaystyle ∫^1_x\dfrac{dt}{t}\right]\)

    39)\(\dfrac{d}{dx}\left[\displaystyle ∫^{x^2}_x\dfrac{dt}{t}\right]\)

    Contestar
    \(\dfrac{1}{x}\)

    40)\(\dfrac{d}{dx}\Big[\ln(\sec x+\tan x)\Big]\)

    En los ejercicios 41 - 44, usa la función\(\ln x\). Si no puede encontrar puntos de intersección analíticamente, use una calculadora.

    41) Encontrar el área de la región encerrada por\(x=1\) y por\(y=5\) encima\(y=\ln x\).

    Contestar
    \((e^5−6)\text{ units}^2\)

    42) [T] Encuentra la longitud del arco de\(\ln x\) desde\(x=1\) hasta\(x=2\).

    43) Encuentra el área entre\(\ln x\) y el\(x\) eje de\(x=1\) a\(x=2\).

    Contestar
    \(\ln(4)−1) \text{ units}^2\)

    44) Encuentra el volumen de la forma creada al girar esta curva de\(x=1\) a\(x=2\) alrededor del\(x\) eje, como se muestra aquí.

    Esta figura es una superficie. Se ha generado girando la curva ln x alrededor del eje x. La superficie está dentro de un cubo mostrando que es 3-dimensinal.

    45) [T] Encuentra el área de superficie de la forma creada al girar la curva en el ejercicio anterior de\(x=1\) a\(x=2\) alrededor del\(x\) eje.

    Contestar
    \(2.8656 \text{ units}^2\)

    Si no puedes encontrar puntos de intersección analíticamente en los siguientes ejercicios, usa una calculadora.

    46) Encuentra el área del cuarto de círculo hiperbólico encerrado por\(x=2\) y\(y=2\) arriba\(y=1/x.\)

    47) [T] Encuentra la longitud del arco de\(y=1/x\) desde\(x=1\) hasta\(x=4\).

    Contestar
    \(s = 3.1502\)unidades

    48) Encuentra el área debajo\(y=1/x\) y por encima del\(x\) eje -desde\(x=1\) hasta\(x=4\).

    En los ejercicios 49 - 53, verificar los derivados y antiderivados.

    49)\(\dfrac{d}{dx}\Big[\ln(x+\sqrt{x^2+1})\Big]=\dfrac{1}{\sqrt{1+x^2}}\)

    50)\(\dfrac{d}{dx}\Big[\ln\left(\frac{x−a}{x+a}\right)\Big]=\dfrac{2a}{(x^2−a^2)}\)

    51)\(\dfrac{d}{dx}\Big[\ln\left(\frac{1+\sqrt{1−x^2}}{x}\right)\Big]=−\dfrac{1}{x\sqrt{1−x^2}}\)

    52)\(\dfrac{d}{dx}\Big[\ln(x+\sqrt{x^2−a^2})\Big]=\dfrac{1}{\sqrt{x^2−a^2}}\)

    53)\(\displaystyle ∫\frac{dx}{x\ln(x)\ln(\ln x)}=\ln|\ln(\ln x)|+C\)


    This page titled 6.7E: Ejercicios para la Sección 6.7 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.